Documentation

Mathlib.Analysis.InnerProductSpace.Adjoint

Adjoint of operators on Hilbert spaces #

Given an operator A : E →L[𝕜] F, where E and F are Hilbert spaces, its adjoint adjoint A : F →L[𝕜] E is the unique operator such that ⟪x, A y⟫ = ⟪adjoint A x, y⟫ for all x and y.

We then use this to put a C⋆-algebra structure on E →L[𝕜] E with the adjoint as the star operation.

This construction is used to define an adjoint for linear maps (i.e. not continuous) between finite-dimensional spaces.

Main definitions #

Implementation notes #

Tags #

adjoint

Adjoint operator #

noncomputable def ContinuousLinearMap.adjointAux {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] :
(E →L[𝕜] F) →L⋆[𝕜] F →L[𝕜] E

The adjoint, as a continuous conjugate-linear map. This is only meant as an auxiliary definition for the main definition adjoint, where this is bundled as a conjugate-linear isometric equivalence.

Equations
    Instances For
      @[simp]
      theorem ContinuousLinearMap.adjointAux_apply {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : F) :
      theorem ContinuousLinearMap.adjointAux_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : E) (y : F) :
      inner 𝕜 ((adjointAux A) y) x = inner 𝕜 y (A x)
      theorem ContinuousLinearMap.adjointAux_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : E) (y : F) :
      inner 𝕜 x ((adjointAux A) y) = inner 𝕜 (A x) y
      def ContinuousLinearMap.adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] :
      (E →L[𝕜] F) ≃ₗᵢ⋆[𝕜] F →L[𝕜] E

      The adjoint of a bounded operator A from a Hilbert space E to another Hilbert space F, denoted as A†.

      Equations
        Instances For

          The adjoint of a bounded operator A from a Hilbert space E to another Hilbert space F, denoted as A†.

          Equations
            Instances For
              theorem ContinuousLinearMap.adjoint_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) (y : F) :
              inner 𝕜 ((adjoint A) y) x = inner 𝕜 y (A x)

              The fundamental property of the adjoint.

              theorem ContinuousLinearMap.adjoint_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) (y : F) :
              inner 𝕜 x ((adjoint A) y) = inner 𝕜 (A x) y

              The fundamental property of the adjoint.

              @[simp]
              theorem ContinuousLinearMap.adjoint_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :

              The adjoint is involutive.

              @[simp]
              theorem ContinuousLinearMap.adjoint_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [InnerProductSpace 𝕜 G] [CompleteSpace E] [CompleteSpace G] [CompleteSpace F] (A : F →L[𝕜] G) (B : E →L[𝕜] F) :

              The adjoint of the composition of two operators is the composition of the two adjoints in reverse order.

              theorem ContinuousLinearMap.eq_adjoint_iff {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (B : F →L[𝕜] E) :
              A = adjoint B ∀ (x : E) (y : F), inner 𝕜 (A x) y = inner 𝕜 x (B y)

              The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all x and y.

              @[simp]
              theorem LinearMap.IsSymmetric.clm_adjoint_eq {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : (↑A).IsSymmetric) :
              theorem ContinuousLinearMap.orthogonal_range {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (T : E →L[𝕜] F) :
              (↑T).range = (↑(adjoint T)).ker
              theorem ContinuousLinearMap.ker_le_ker_iff_range_le_range {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {T U : E →L[𝕜] E} (hT : (↑T).IsSymmetric) (hU : (↑U).IsSymmetric) :
              (↑U).ker (↑T).ker (↑T).range (↑U).range
              instance ContinuousLinearMap.instStarId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
              Star (E →L[𝕜] E)

              E →L[𝕜] E is a star algebra with the adjoint as the star operation.

              Equations
                instance ContinuousLinearMap.instStarMulId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
                StarMul (E →L[𝕜] E)
                Equations
                  instance ContinuousLinearMap.instStarRingId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
                  StarRing (E →L[𝕜] E)
                  Equations
                    theorem ContinuousLinearMap.isSelfAdjoint_iff' {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} :

                    A continuous linear operator is self-adjoint iff it is equal to its adjoint.

                    instance ContinuousLinearMap.instCStarRingId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
                    CStarRing (E →L[𝕜] E)

                    The C⋆-algebra instance when 𝕜 := ℂ can be found in Mathlib/Analysis/CStarAlgebra/ContinuousLinearMap.lean.

                    theorem ContinuousLinearMap.innerSL_apply_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (x : F) (f : E →L[𝕜] F) :
                    ((innerSL 𝕜) x).comp f = (innerSL 𝕜) ((adjoint f) x)
                    theorem ContinuousLinearMap.innerSL_apply_comp_of_isSymmetric {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (x : E) {f : E →L[𝕜] E} (hf : (↑f).IsSymmetric) :
                    ((innerSL 𝕜) x).comp f = (innerSL 𝕜) (f x)
                    @[simp]
                    theorem InnerProductSpace.adjoint_rankOne {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (x : E) (y : F) :
                    ContinuousLinearMap.adjoint (((rankOne 𝕜) x) y) = ((rankOne 𝕜) y) x
                    theorem InnerProductSpace.rankOne_comp {𝕜 : Type u_1} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] [CompleteSpace F] {E : Type u_5} {G : Type u_6} [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup G] [InnerProductSpace 𝕜 G] [CompleteSpace G] (x : E) (y : F) (f : G →L[𝕜] F) :
                    (((rankOne 𝕜) x) y).comp f = ((rankOne 𝕜) x) ((ContinuousLinearMap.adjoint f) y)

                    Self-adjoint operators #

                    theorem IsSelfAdjoint.isSymmetric {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : IsSelfAdjoint A) :

                    Every self-adjoint operator on an inner product space is symmetric.

                    theorem IsSelfAdjoint.conj_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) (S : E →L[𝕜] F) :

                    Conjugating preserves self-adjointness.

                    theorem IsSelfAdjoint.adjoint_conj {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) (S : F →L[𝕜] E) :

                    Conjugating preserves self-adjointness.

                    @[simp]

                    The orthogonal projection is self-adjoint.

                    theorem ContinuousLinearMap.isStarNormal_iff_norm_eq_adjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {T : E →L[𝕜] E} [CompleteSpace E] :
                    IsStarNormal T ∀ (v : E), T v = (adjoint T) v

                    An operator T is normal iff ‖T v‖ = ‖(adjoint T) v‖ for all v.

                    theorem ContinuousLinearMap.IsStarNormal.adjoint_apply_eq_zero_iff {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {T : E →L[𝕜] E} [CompleteSpace E] (hT : IsStarNormal T) (x : E) :
                    (adjoint T) x = 0 T x = 0
                    theorem ContinuousLinearMap.IsStarNormal.orthogonal_range {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {T : E →L[𝕜] E} [CompleteSpace E] (hT : IsStarNormal T) :
                    (↑T).range = (↑T).ker

                    The range of a normal operator is pairwise orthogonal to its kernel.

                    This is a weaker version of LinearMap.IsSymmetric.orthogonal_range but with stronger type class assumptions (i.e., CompleteSpace).

                    An idempotent operator is self-adjoint iff it is normal.

                    A continuous linear map is a star projection iff it is idempotent and normal.

                    theorem ContinuousLinearMap.IsStarProjection.ext_iff {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {T : E →L[𝕜] E} [CompleteSpace E] {S : E →L[𝕜] E} (hS : IsStarProjection S) (hT : IsStarProjection T) :
                    S = T (↑S).range = (↑T).range

                    Star projection operators are equal iff their range are.

                    theorem ContinuousLinearMap.IsStarProjection.ext {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {T : E →L[𝕜] E} [CompleteSpace E] {S : E →L[𝕜] E} (hS : IsStarProjection S) (hT : IsStarProjection T) :
                    (↑S).range = (↑T).rangeS = T

                    Alias of the reverse direction of ContinuousLinearMap.IsStarProjection.ext_iff.


                    Star projection operators are equal iff their range are.

                    @[simp]

                    U.starProjection is a star projection.

                    An operator is a star projection if and only if it is an orthogonal projection.

                    def LinearMap.IsSymmetric.toSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) :
                    (selfAdjoint (E →L[𝕜] E))

                    The Hellinger--Toeplitz theorem: Construct a self-adjoint operator from an everywhere defined symmetric operator.

                    Equations
                      Instances For
                        theorem LinearMap.IsSymmetric.coe_toSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) :
                        hT.toSelfAdjoint = T
                        theorem LinearMap.IsSymmetric.toSelfAdjoint_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) {x : E} :
                        hT.toSelfAdjoint x = T x
                        def LinearMap.adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] :
                        (E →ₗ[𝕜] F) ≃ₗ⋆[𝕜] F →ₗ[𝕜] E

                        The adjoint of an operator from the finite-dimensional inner product space E to the finite-dimensional inner product space F.

                        Equations
                          Instances For
                            theorem LinearMap.adjoint_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (x : E) (y : F) :
                            inner 𝕜 ((adjoint A) y) x = inner 𝕜 y (A x)

                            The fundamental property of the adjoint.

                            theorem LinearMap.adjoint_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (x : E) (y : F) :
                            inner 𝕜 x ((adjoint A) y) = inner 𝕜 (A x) y

                            The fundamental property of the adjoint.

                            @[simp]
                            theorem LinearMap.adjoint_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :

                            The adjoint is involutive.

                            @[simp]
                            theorem LinearMap.adjoint_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [InnerProductSpace 𝕜 G] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] [FiniteDimensional 𝕜 G] (A : F →ₗ[𝕜] G) (B : E →ₗ[𝕜] F) :

                            The adjoint of the composition of two operators is the composition of the two adjoints in reverse order.

                            theorem LinearMap.eq_adjoint_iff {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
                            A = adjoint B ∀ (x : E) (y : F), inner 𝕜 (A x) y = inner 𝕜 x (B y)

                            The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all x and y.

                            @[simp]
                            theorem LinearMap.IsSymmetric.adjoint_eq {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {A : E →ₗ[𝕜] E} (hA : A.IsSymmetric) :
                            theorem LinearMap.eq_adjoint_iff_basis {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι₁ : Type u_5} {ι₂ : Type u_6} (b₁ : Module.Basis ι₁ 𝕜 E) (b₂ : Module.Basis ι₂ 𝕜 F) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
                            A = adjoint B ∀ (i₁ : ι₁) (i₂ : ι₂), inner 𝕜 (A (b₁ i₁)) (b₂ i₂) = inner 𝕜 (b₁ i₁) (B (b₂ i₂))

                            The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all basis vectors x and y.

                            theorem LinearMap.eq_adjoint_iff_basis_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι : Type u_5} (b : Module.Basis ι 𝕜 E) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
                            A = adjoint B ∀ (i : ι) (y : F), inner 𝕜 (A (b i)) y = inner 𝕜 (b i) (B y)
                            theorem LinearMap.eq_adjoint_iff_basis_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι : Type u_5} (b : Module.Basis ι 𝕜 F) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
                            A = adjoint B ∀ (i : ι) (x : E), inner 𝕜 (A x) (b i) = inner 𝕜 x (B (b i))
                            instance LinearMap.instStarId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
                            Star (E →ₗ[𝕜] E)

                            E →ₗ[𝕜] E is a star algebra with the adjoint as the star operation.

                            Equations
                              instance LinearMap.instStarMulId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
                              StarMul (E →ₗ[𝕜] E)
                              Equations
                                instance LinearMap.instStarRingId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
                                StarRing (E →ₗ[𝕜] E)
                                Equations
                                  instance LinearMap.instStarModuleId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
                                  StarModule 𝕜 (E →ₗ[𝕜] E)
                                  theorem LinearMap.star_eq_adjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (A : E →ₗ[𝕜] E) :
                                  theorem LinearMap.isSelfAdjoint_iff' {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {A : E →ₗ[𝕜] E} :

                                  A continuous linear operator is self-adjoint iff it is equal to its adjoint.

                                  theorem LinearMap.isAdjointPair_inner {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :
                                  theorem LinearMap.isSymmetric_adjoint_mul_self {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) :

                                  The Gram operator T†T is symmetric.

                                  theorem LinearMap.re_inner_adjoint_mul_self_nonneg {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) (x : E) :
                                  0 RCLike.re (inner 𝕜 x ((adjoint T * T) x))

                                  The Gram operator T†T is a positive operator.

                                  @[simp]
                                  theorem LinearMap.im_inner_adjoint_mul_self_eq_zero {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) (x : E) :
                                  RCLike.im (inner 𝕜 x ((adjoint T) (T x))) = 0
                                  theorem LinearMap.IsStarProjection.ext_iff {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {S T : E →ₗ[𝕜] E} (hS : IsStarProjection S) (hT : IsStarProjection T) :
                                  S = T S.range = T.range

                                  Star projection operators are equal iff their range are.

                                  theorem LinearMap.IsStarProjection.ext {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {S T : E →ₗ[𝕜] E} (hS : IsStarProjection S) (hT : IsStarProjection T) :
                                  S.range = T.rangeS = T

                                  Alias of the reverse direction of LinearMap.IsStarProjection.ext_iff.


                                  Star projection operators are equal iff their range are.

                                  theorem ContinuousLinearMap.inner_map_map_iff_adjoint_comp_self {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (u : H →L[𝕜] K) :
                                  (∀ (x y : H), inner 𝕜 (u x) (u y) = inner 𝕜 x y) (adjoint u).comp u = 1
                                  theorem ContinuousLinearMap.norm_map_of_mem_unitary {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {u : H →L[𝕜] H} (hu : u unitary (H →L[𝕜] H)) (x : H) :
                                  theorem ContinuousLinearMap.inner_map_map_of_mem_unitary {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {u : H →L[𝕜] H} (hu : u unitary (H →L[𝕜] H)) (x y : H) :
                                  inner 𝕜 (u x) (u y) = inner 𝕜 x y
                                  def LinearIsometryEquiv.conjStarAlgEquiv {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (e : H ≃ₗᵢ[𝕜] K) :
                                  (H →L[𝕜] H) ≃⋆ₐ[𝕜] K →L[𝕜] K

                                  An isometric linear equivalence of two Hilbert spaces induces an equivalence of ⋆-algebras of their endomorphisms.

                                  When H = K, this is exactly Unitary.conjStarAlgAut (see Unitary.conjStarAlgEquiv_unitaryLinearIsometryEquiv and Unitary.conjStarAlgAut_symm_unitaryLinearIsometryEquiv).

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem LinearIsometryEquiv.conjStarAlgEquiv_apply_apply {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (e : H ≃ₗᵢ[𝕜] K) (x : H →L[𝕜] H) (y : K) :
                                      (e.conjStarAlgEquiv x) y = e (x (e.symm y))
                                      theorem LinearIsometryEquiv.symm_conjStarAlgEquiv_apply_apply {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (e : H ≃ₗᵢ[𝕜] K) (f : K →L[𝕜] K) (x : H) :
                                      (e.conjStarAlgEquiv.symm f) x = e.symm (f (e x))
                                      theorem Unitary.norm_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) (x : H) :
                                      u x = x
                                      theorem Unitary.inner_map_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) (x y : H) :
                                      inner 𝕜 (u x) (u y) = inner 𝕜 x y
                                      noncomputable def Unitary.linearIsometryEquiv {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] :
                                      (unitary (H →L[𝕜] H)) ≃* (H ≃ₗᵢ[𝕜] H)

                                      The unitary elements of continuous linear maps on a Hilbert space coincide with the linear isometric equivalences on that Hilbert space.

                                      Equations
                                        Instances For
                                          @[deprecated Unitary.coe_linearIsometryEquiv_apply (since := "2025-12-16")]

                                          Alias of Unitary.coe_linearIsometryEquiv_apply.

                                          @[deprecated Unitary.coe_symm_linearIsometryEquiv_apply (since := "2025-12-16")]

                                          Alias of Unitary.coe_symm_linearIsometryEquiv_apply.

                                          @[deprecated Unitary.norm_map (since := "2025-10-29")]
                                          theorem unitary.norm_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) (x : H) :
                                          u x = x

                                          Alias of Unitary.norm_map.

                                          @[deprecated Unitary.inner_map_map (since := "2025-10-29")]
                                          theorem unitary.inner_map_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) (x y : H) :
                                          inner 𝕜 (u x) (u y) = inner 𝕜 x y

                                          Alias of Unitary.inner_map_map.

                                          @[deprecated Unitary.linearIsometryEquiv (since := "2025-10-29")]
                                          def unitary.linearIsometryEquiv {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] :
                                          (unitary (H →L[𝕜] H)) ≃* (H ≃ₗᵢ[𝕜] H)

                                          Alias of Unitary.linearIsometryEquiv.


                                          The unitary elements of continuous linear maps on a Hilbert space coincide with the linear isometric equivalences on that Hilbert space.

                                          Equations
                                            Instances For
                                              @[deprecated Unitary.linearIsometryEquiv_coe_apply (since := "2025-10-29")]

                                              Alias of Unitary.coe_linearIsometryEquiv_apply.


                                              Alias of Unitary.coe_linearIsometryEquiv_apply.

                                              @[deprecated Unitary.linearIsometryEquiv_coe_symm_apply (since := "2025-10-29")]

                                              Alias of Unitary.coe_symm_linearIsometryEquiv_apply.


                                              Alias of Unitary.coe_symm_linearIsometryEquiv_apply.

                                              theorem Matrix.toLin_conjTranspose {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (v₁ : OrthonormalBasis n 𝕜 E) (v₂ : OrthonormalBasis m 𝕜 F) (A : Matrix m n 𝕜) :

                                              The linear map associated to the conjugate transpose of a matrix corresponding to two orthonormal bases is the adjoint of the linear map associated to the matrix.

                                              theorem LinearMap.toMatrix_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (v₁ : OrthonormalBasis n 𝕜 E) (v₂ : OrthonormalBasis m 𝕜 F) (f : E →ₗ[𝕜] F) :

                                              The matrix associated to the adjoint of a linear map corresponding to two orthonormal bases is the conjugate transpose of the matrix associated to the linear map.

                                              def LinearMap.toMatrixOrthonormal {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) :
                                              (E →ₗ[𝕜] E) ≃⋆ₐ[𝕜] Matrix n n 𝕜

                                              The star algebra equivalence between the linear endomorphisms of finite-dimensional inner product space and square matrices induced by the choice of an orthonormal basis.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem LinearMap.toMatrixOrthonormal_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (a✝ : E →ₗ[𝕜] E) :
                                                  (toMatrixOrthonormal v₁) a✝ = (↑(toMatrix v₁.toBasis v₁.toBasis)).toFun a✝
                                                  @[simp]
                                                  theorem LinearMap.toMatrixOrthonormal_symm_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (a✝ : Matrix n n 𝕜) :
                                                  (toMatrixOrthonormal v₁).symm a✝ = (toMatrix v₁.toBasis v₁.toBasis).invFun a✝
                                                  theorem LinearMap.toMatrixOrthonormal_apply_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (f : E →ₗ[𝕜] E) (i j : n) :
                                                  (toMatrixOrthonormal v₁) f i j = inner 𝕜 (v₁ i) (f (v₁ j))
                                                  theorem LinearMap.toMatrixOrthonormal_reindex {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (e : n m) (f : E →ₗ[𝕜] E) :

                                                  The adjoint of the linear map associated to a matrix is the linear map associated to the conjugate transpose of that matrix.