Documentation

Mathlib.CategoryTheory.Bicategory.Adjunction.Cat

Adjunctions in Cat #

We show that adjunctions in the bicategory Cat correspond to adjunctions between functors in the usual categorical sense.

The adjunction in the bicategorical sense attached to an adjunction between functors.

Equations
    Instances For
      def CategoryTheory.Adjunction.ofCat {C D : Cat} {F : C D} {G : D C} (adj : Bicategory.Adjunction F G) :

      The adjunction of functors corresponding to an adjunction in the bicategory Cat.

      Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Adjunction.ofCat_unit {C D : Cat} {F : C D} {G : D C} (adj : Bicategory.Adjunction F G) :
          @[simp]
          theorem CategoryTheory.Adjunction.ofCat_counit {C D : Cat} {F : C D} {G : D C} (adj : Bicategory.Adjunction F G) :
          @[simp]
          theorem CategoryTheory.Adjunction.toCat_ofCat {C D : Cat} {F : C D} {G : D C} (adj : Bicategory.Adjunction F G) :
          (ofCat adj).toCat = adj
          @[simp]
          theorem CategoryTheory.Adjunction.ofCat_toCat {C D : Type u} [Category.{v, u} C] [Category.{v, u} D] {F : Functor C D} {G : Functor D C} (adj : F G) :
          ofCat adj.toCat = adj
          theorem CategoryTheory.Adjunction.toCat_comp_toCat {C D E : Type u} [Category.{v, u} C] [Category.{v, u} D] [Category.{v, u} E] {F : Functor C D} {G : Functor D C} (adj : F G) {F' : Functor D E} {G' : Functor E D} (adj' : F' G') :
          adj.toCat.comp adj'.toCat = (adj.comp adj').toCat
          theorem CategoryTheory.Bicategory.Adjunction.ofCat_comp {C D E : Cat} {F : C D} {G : D C} (adj : Adjunction F G) {F' : D E} {G' : E D} (adj' : Adjunction F' G') :
          theorem CategoryTheory.Bicategory.toNatTrans_mateEquiv {C D E F : Cat} {G : C E} {H : D F} {L₁ : C D} {R₁ : D C} {L₂ : E F} {R₂ : F E} (adj₁ : Adjunction L₁ R₁) (adj₂ : Adjunction L₂ R₂) (f : CategoryStruct.comp G L₂ CategoryStruct.comp L₁ H) :
          theorem CategoryTheory.Bicategory.toNatTrans_conjugateEquiv {C D : Cat} {L₁ L₂ : C D} {R₁ R₂ : D C} (adj₁ : Adjunction L₁ R₁) (adj₂ : Adjunction L₂ R₂) (f : L₂ L₁) :