Existence of wide pullbacks when the target object is terminal #
In this file, we show that the wide pullback of a family of arrows objs j ⟶ B
exists when B is terminal and the product of the objects objs j exists.
@[reducible, inline]
abbrev
CategoryTheory.Limits.WidePullbackCone.toFan
{C : Type u}
[Category.{v, u} C]
{ι : Type w}
{B : C}
{objs : ι → C}
(arrows : (j : ι) → objs j ⟶ B)
(s : WidePullbackCone arrows)
:
Fan objs
The fan that is induced by a wide pullback cone.
Equations
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.WidePullbackCone.ofFan
{C : Type u}
[Category.{v, u} C]
{ι : Type w}
{B : C}
{objs : ι → C}
(arrows : (j : ι) → objs j ⟶ B)
(c : Fan objs)
(hB : IsTerminal B)
:
WidePullbackCone arrows
The wide pullback cone given by a fan, when the base object is terminal.
Equations
Instances For
def
CategoryTheory.Limits.WidePullbackCone.isLimitOfFan
{C : Type u}
[Category.{v, u} C]
{ι : Type w}
{B : C}
{objs : ι → C}
(arrows : (j : ι) → objs j ⟶ B)
{c : Fan objs}
(hc : IsLimit c)
(hB : IsTerminal B)
:
When the base object is terminal, a limit wide pullback cone can be obtained from a limit fan.
Equations
Instances For
theorem
CategoryTheory.Limits.hasWidePullback_of_isTerminal
{C : Type u}
[Category.{v, u} C]
{ι : Type w}
{B : C}
{objs : ι → C}
(arrows : (j : ι) → objs j ⟶ B)
[HasProduct objs]
(hB : IsTerminal B)
:
HasWidePullback B objs arrows