Documentation

Mathlib.CategoryTheory.Triangulated.SpectralObject

Spectral objects in triangulated categories #

In this file, we introduce the category SpectralObject C ι of spectral objects in a pretriangulated category C indexed by the category ι.

TODO (@joelriou) #

References #

structure CategoryTheory.Triangulated.SpectralObject (C : Type u_1) (ι : Type u_2) [Category.{v_1, u_1} C] [Category.{v_2, u_2} ι] [Limits.HasZeroObject C] [HasShift C ] [Preadditive C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] :
Type (max (max (max u_1 u_2) v_1) v_2)

A spectral object in a pretriangulated category C indexed by a category ι consists of a functor ω₁ : ComposableArrows ι 1 ⥤ C, and a functorial distinguished triangle from the category ComposableArrows ι 2, which must be of the form ω₁.obj (mk₁ f) ⟶ ω₁.obj (mk₁ (f ≫ g)) ⟶ ω₁.obj (mk₁ g) ⟶ ... when evaluated on mk₂ f g : ComposableArrows ι 2.

Instances For

    The functorial (distinguished) triangle attached to a spectral object in a pretriangulated category.

    Equations
      Instances For

        The connecting homomorphism X.ω₁.obj (mk₁ g) ⟶ (X.ω₁.obj (mk₁ f))⟦(1 : ℤ)⟧ of a spectral object X in a pretriangulated category when f : i ⟶ j and g : j ⟶ k are composable.

        Equations
          Instances For

            The distinguished triangle attached to a spectral object E : SpectralObjet C ι and composable morphisms f : i ⟶ j and g : j ⟶ k in ι.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Triangulated.SpectralObject.triangle_mor₃ {C : Type u_1} {ι : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} ι] [Limits.HasZeroObject C] [HasShift C ] [Preadditive C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (X : SpectralObject C ι) {i j k : ι} (f : i j) (g : j k) :
                (X.triangle f g).mor₃ = X.δ f g

                The precomposition of a spectral object with a functor.

                Equations
                  Instances For

                    The image of a spectral by a triangulated functor.

                    Equations
                      Instances For
                        structure CategoryTheory.Triangulated.SpectralObject.Hom {C : Type u_1} {ι : Type u_2} [Category.{v_1, u_1} C] [Category.{v_2, u_2} ι] [Limits.HasZeroObject C] [HasShift C ] [Preadditive C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (X Y : SpectralObject C ι) :
                        Type (max (max u_2 v_1) v_2)

                        The type of morphisms between spectral objects in pretriangulated categories.

                        Instances For
                          theorem CategoryTheory.Triangulated.SpectralObject.Hom.ext {C : Type u_1} {ι : Type u_2} {inst✝ : Category.{v_1, u_1} C} {inst✝¹ : Category.{v_2, u_2} ι} {inst✝² : Limits.HasZeroObject C} {inst✝³ : HasShift C } {inst✝⁴ : Preadditive C} {inst✝⁵ : ∀ (n : ), (shiftFunctor C n).Additive} {inst✝⁶ : Pretriangulated C} {X Y : SpectralObject C ι} {x y : X.Hom Y} (hom : x.hom = y.hom) :
                          x = y
                          theorem CategoryTheory.Triangulated.SpectralObject.Hom.ext_iff {C : Type u_1} {ι : Type u_2} {inst✝ : Category.{v_1, u_1} C} {inst✝¹ : Category.{v_2, u_2} ι} {inst✝² : Limits.HasZeroObject C} {inst✝³ : HasShift C } {inst✝⁴ : Preadditive C} {inst✝⁵ : ∀ (n : ), (shiftFunctor C n).Additive} {inst✝⁶ : Pretriangulated C} {X Y : SpectralObject C ι} {x y : X.Hom Y} :
                          x = y x.hom = y.hom

                          The functor between categories of spectral objects that is induced by a triangulated functor.

                          Equations
                            Instances For