Documentation

Mathlib.Geometry.Manifold.HasGroupoid

Charted spaces with a given structure groupoid #

class HasGroupoid {H : Type u_5} [TopologicalSpace H] (M : Type u_6) [TopologicalSpace M] [ChartedSpace H M] (G : StructureGroupoid H) :

A charted space has an atlas in a groupoid G if the change of coordinates belong to the groupoid.

Instances
    theorem StructureGroupoid.compatible {H : Type u_5} [TopologicalSpace H] (G : StructureGroupoid H) {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [HasGroupoid M G] {e e' : OpenPartialHomeomorph M H} (he : e โˆˆ atlas H M) (he' : e' โˆˆ atlas H M) :

    Reformulate in the StructureGroupoid namespace the compatibility condition of charts in a charted space admitting a structure groupoid, to make it more easily accessible with dot notation.

    theorem hasGroupoid_of_le {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {Gโ‚ Gโ‚‚ : StructureGroupoid H} (h : HasGroupoid M Gโ‚) (hle : Gโ‚ โ‰ค Gโ‚‚) :
    HasGroupoid M Gโ‚‚
    theorem hasGroupoid_inf_iff {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {Gโ‚ Gโ‚‚ : StructureGroupoid H} :
    HasGroupoid M (Gโ‚ โŠ“ Gโ‚‚) โ†” HasGroupoid M Gโ‚ โˆง HasGroupoid M Gโ‚‚
    theorem hasGroupoid_of_pregroupoid {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (PG : Pregroupoid H) (h : โˆ€ {e e' : OpenPartialHomeomorph M H}, e โˆˆ atlas H M โ†’ e' โˆˆ atlas H M โ†’ PG.property (โ†‘(e.symm.trans e')) (e.symm.trans e').source) :

    The trivial charted space structure on the model space is compatible with any groupoid.

    Any charted space structure is compatible with the groupoid of all open partial homeomorphisms.

    If G is closed under restriction, the transition function between the restriction of two charts e and e' lies in G.

    Given a charted space admitting a structure groupoid, the maximal atlas associated to this structure groupoid is the set of all charts that are compatible with the atlas, i.e., such that changing coordinates with an atlas member gives an element of the groupoid.

    Equations
      Instances For

        The elements of the atlas belong to the maximal atlas for any structure groupoid.

        Changing coordinates between two elements of the maximal atlas gives rise to an element of the structure groupoid.

        The maximal atlas of a structure groupoid is stable under equivalence.

        In the model space, the identity is in any maximal atlas.

        In the model space, any element of the groupoid is in the maximal atlas.

        If a structure groupoid G is closed under restriction, for any chart e in the maximal atlas, the restriction e.restr s to an open set s is also in the maximal atlas.

        If a single open partial homeomorphism e from a space ฮฑ into H has source covering the whole space ฮฑ, then that open partial homeomorphism induces an H-charted space structure on ฮฑ. (This condition is equivalent to e being an open embedding of ฮฑ into H; see IsOpenEmbedding.singletonChartedSpace.)

        Equations
          Instances For

            Given an open partial homeomorphism e from a space ฮฑ into H, if its source covers the whole space ฮฑ, then the induced charted space structure on ฮฑ is HasGroupoid G for any structure groupoid G which is closed under restrictions.

            def Topology.IsOpenEmbedding.singletonChartedSpace {H : Type u} [TopologicalSpace H] {ฮฑ : Type u_5} [TopologicalSpace ฮฑ] [Nonempty ฮฑ] {f : ฮฑ โ†’ H} (h : IsOpenEmbedding f) :
            ChartedSpace H ฮฑ

            An open embedding of ฮฑ into H induces an H-charted space structure on ฮฑ. See OpenPartialHomeomorph.singletonChartedSpace.

            Equations
              Instances For
                theorem Topology.IsOpenEmbedding.singletonChartedSpace_chartAt_eq {H : Type u} [TopologicalSpace H] {ฮฑ : Type u_5} [TopologicalSpace ฮฑ] [Nonempty ฮฑ] {f : ฮฑ โ†’ H} (h : IsOpenEmbedding f) {x : ฮฑ} :
                โ†‘(chartAt H x) = f

                An open subset of a charted space is naturally a charted space.

                Equations
                  theorem TopologicalSpace.Opens.chartAt_eq {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {s : Opens M} {x : โ†ฅs} :
                  chartAt H x = (chartAt H โ†‘x).subtypeRestr โ‹ฏ
                  theorem TopologicalSpace.Opens.chart_eq {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {s : Opens M} (hs : Nonempty โ†ฅs) {e : OpenPartialHomeomorph (โ†ฅs) H} (he : e โˆˆ atlas H โ†ฅs) :
                  โˆƒ (x : โ†ฅs), e = (chartAt H โ†‘x).subtypeRestr hs

                  If s is a non-empty open subset of M, every chart of s is the restriction of some chart on M.

                  theorem TopologicalSpace.Opens.chart_eq' {H : Type u} [TopologicalSpace H] {t : Opens H} (ht : Nonempty โ†ฅt) {e' : OpenPartialHomeomorph (โ†ฅt) H} (he' : e' โˆˆ atlas H โ†ฅt) :
                  โˆƒ (x : โ†ฅt), e' = (chartAt H โ†‘x).subtypeRestr ht

                  If t is a non-empty open subset of H, every chart of t is the restriction of some chart on H.

                  If a groupoid G is ClosedUnderRestriction, then an open subset of a space which is HasGroupoid G is naturally HasGroupoid G.

                  theorem TopologicalSpace.Opens.chartAt_subtype_val_symm_eventuallyEq {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (U : Opens M) {x : โ†ฅU} :
                  โ†‘(chartAt H โ†‘x).symm =แถ [nhds (โ†‘(chartAt H โ†‘x) โ†‘x)] Subtype.val โˆ˜ โ†‘(chartAt H x).symm
                  theorem TopologicalSpace.Opens.chartAt_inclusion_symm_eventuallyEq {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {U V : Opens M} (hUV : U โ‰ค V) {x : โ†ฅU} :
                  โ†‘(chartAt H (inclusion hUV x)).symm =แถ [nhds (โ†‘(chartAt H (inclusion hUV x)) (Set.inclusion hUV x))] inclusion hUV โˆ˜ โ†‘(chartAt H x).symm

                  Restricting a chart of M to an open subset s yields a chart in the maximal atlas of s.

                  NB. We cannot deduce membership in atlas H s in general: by definition, this atlas contains precisely the restriction of each preferred chart at x โˆˆ s --- whereas atlas H M can contain more charts than these.

                  @[deprecated StructureGroupoid.subtypeRestr_mem_maximalAtlas (since := "2025-08-17")]

                  Alias of StructureGroupoid.subtypeRestr_mem_maximalAtlas.


                  Restricting a chart of M to an open subset s yields a chart in the maximal atlas of s.

                  NB. We cannot deduce membership in atlas H s in general: by definition, this atlas contains precisely the restriction of each preferred chart at x โˆˆ s --- whereas atlas H M can contain more charts than these.

                  Structomorphisms #

                  structure Structomorph {H : Type u} [TopologicalSpace H] (G : StructureGroupoid H) (M : Type u_5) (M' : Type u_6) [TopologicalSpace M] [TopologicalSpace M'] [ChartedSpace H M] [ChartedSpace H M'] extends M โ‰ƒโ‚œ M' :
                  Type (max u_5 u_6)

                  A G-diffeomorphism between two charted spaces is a homeomorphism which, when read in the charts, belongs to G. We avoid the word diffeomorph as it is too related to the smooth category, and use structomorph instead.

                  Instances For

                    The identity is a diffeomorphism of any charted space, for any groupoid.

                    Equations
                      Instances For
                        def Structomorph.symm {H : Type u} {M : Type u_2} {M' : Type u_3} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [TopologicalSpace M'] {G : StructureGroupoid H} [ChartedSpace H M'] (e : Structomorph G M M') :

                        The inverse of a structomorphism is a structomorphism.

                        Equations
                          Instances For
                            def Structomorph.trans {H : Type u} {M : Type u_2} {M' : Type u_3} {M'' : Type u_4} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] [TopologicalSpace M'] [TopologicalSpace M''] {G : StructureGroupoid H} [ChartedSpace H M'] [ChartedSpace H M''] (e : Structomorph G M M') (e' : Structomorph G M' M'') :
                            Structomorph G M M''

                            The composition of structomorphisms is a structomorphism.

                            Equations
                              Instances For
                                theorem StructureGroupoid.restriction_mem_maximalAtlas_subtype {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {G : StructureGroupoid H} {e : OpenPartialHomeomorph M H} (he : e โˆˆ atlas H M) (hs : Nonempty โ†‘e.source) [HasGroupoid M G] [ClosedUnderRestriction G] :
                                let s := { carrier := e.source, is_open' := โ‹ฏ }; let t := { carrier := e.target, is_open' := โ‹ฏ }; โˆ€ c' โˆˆ atlas H โ†ฅt, e.toHomeomorphSourceTarget.toOpenPartialHomeomorph.trans c' โˆˆ maximalAtlas (โ†ฅs) G

                                Restricting a chart to its source s โІ M yields a chart in the maximal atlas of s.

                                def OpenPartialHomeomorph.toStructomorph {H : Type u} {M : Type u_2} [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] {G : StructureGroupoid H} {e : OpenPartialHomeomorph M H} (he : e โˆˆ atlas H M) [HasGroupoid M G] [ClosedUnderRestriction G] :
                                have s := { carrier := e.source, is_open' := โ‹ฏ }; have t := { carrier := e.target, is_open' := โ‹ฏ }; Structomorph G โ†ฅs โ†ฅt

                                Each chart of a charted space is a structomorphism between its source and target.

                                Equations
                                  Instances For