Documentation

Mathlib.LinearAlgebra.ExteriorPower.Basis

Constructs a basis for exterior powers #

Finiteness of the exterior power.

instance exteriorPower.instFinite {R : Type u_1} {M : Type u_3} {n : } [CommRing R] [AddCommGroup M] [Module R M] [Module.Finite R M] :

The nth exterior power of a finite module is a finite module.

We construct a basis of ⋀[R]^n M from a basis of M.

noncomputable def exteriorPower.ιMultiDual (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) :
Module.Dual R (⋀[R]^n M)

If b is a basis of M indexed by a linearly ordered type I and s is a finset of I of cardinality n, then we get a linear form on the nth exterior power of M by applying the exteriorPower.linearForm construction to the family of linear forms given by the coordinates of b indexed by elements of s (ordered using the given order on I).

Equations
    Instances For
      @[simp]
      theorem exteriorPower.ιMultiDual_apply_ιMulti (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) (v : Fin nM) :
      (ιMultiDual R n b s) ((ιMulti R n) v) = (Matrix.of fun (i j : Fin n) => (b.coord ((Set.powersetCard.ofFinEmbEquiv.symm s) j)) (v i)).det
      theorem exteriorPower.ιMultiDual_apply_diag (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) :
      (ιMultiDual R n b s) (ιMulti_family R n (⇑b) s) = 1

      Let b be a basis of M indexed by a linearly ordered type I and s be a finset of I of cardinality n. If we apply the linear form on ⋀[R]^n M defined by b and s to the exterior product of the b i for i ∈ s, then we get 1.

      theorem exteriorPower.ιMultiDual_apply_nondiag (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s t : (Set.powersetCard I n)) (hst : s t) :
      (ιMultiDual R n b s) (ιMulti_family R n (⇑b) t) = 0

      Let b be a basis of M indexed by a linearly ordered type I and s be a finset of I of cardinality n. Let t be a finset of I of cardinality n such that s ≠ t. If we apply the linear form on ⋀[R]^n M defined by b and s to the exterior product of the b i for i ∈ t, then we get 0.

      theorem exteriorPower.ιMulti_family_linearIndependent_ofBasis (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) :
      LinearIndependent (ι := (Set.powersetCard I n)) R (ιMulti_family R n b)

      If b is a basis of M (indexed by a linearly ordered type), then the family exteriorPower.ιMulti R n b of the n-fold exterior products of its elements is linearly independent in the nth exterior power of M.

      noncomputable def Module.Basis.exteriorPower {R : Type u_1} {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Basis I R M) :
      Basis (↑(Set.powersetCard I n)) R (⋀[R]^n M)

      If b is a basis of M (indexed by a linearly ordered type), the basis of the nth exterior power of M formed by the n-fold exterior products of elements of b.

      Equations
        Instances For
          @[simp]
          theorem exteriorPower.coe_basis (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) :
          theorem exteriorPower.basis_apply (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) :
          theorem exteriorPower.basis_coord (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) :

          If b is a basis of M indexed by a linearly ordered type I and B is the corresponding basis of the nth exterior power of M, indexed by the set of finsets s of I of cardinality n, then the coordinate function of B at s is the linear form on the nth exterior power defined by b and s in exteriorPower.ιMultiDual.

          theorem exteriorPower.basis_repr_apply (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (x : (⋀[R]^n M)) (s : (Set.powersetCard I n)) :
          @[simp]
          theorem exteriorPower.basis_repr_self (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) :
          ((Module.Basis.exteriorPower n b).repr (ιMulti_family R n (⇑b) s)) s = 1
          @[simp]
          theorem exteriorPower.basis_repr_ne (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) {s t : (Set.powersetCard I n)} (hst : s t) :
          ((Module.Basis.exteriorPower n b).repr (ιMulti_family R n (⇑b) s)) t = 0
          theorem exteriorPower.basis_repr (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] {I : Type u_5} [LinearOrder I] (b : Module.Basis I R M) (s : (Set.powersetCard I n)) :

          Freeness and dimension of `⋀[R]^n M. #

          instance exteriorPower.instFree (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] :
          Module.Free R (⋀[R]^n M)

          If M is a free module, then so is its nth exterior power.

          theorem exteriorPower.finrank_eq (R : Type u_1) {M : Type u_3} (n : ) [CommRing R] [AddCommGroup M] [Module R M] [Nontrivial R] [Module.Free R M] [Module.Finite R M] :

          If R is non-trivial and M is finite free of rank r, then the nth exterior power of M is of finrank Nat.choose r n.

          Results that only hold over a field.

          theorem exteriorPower.ιMulti_family_linearIndependent_field {K : Type u_2} {E : Type u_4} (n : ) [Field K] [AddCommGroup E] [Module K E] {I : Type u_5} [LinearOrder I] {v : IE} (hv : LinearIndependent K v) :

          If v is a linearly independent family of vectors (indexed by a linearly ordered type), then the family of its n-fold exterior products is also linearly independent.