Documentation

Mathlib.LinearAlgebra.Matrix.Ideal

Ideals in a matrix ring #

This file defines left (resp. two-sided) ideals in a matrix semiring (resp. ring) over left (resp. two-sided) ideals in the base semiring (resp. ring). We also characterize Jacobson radicals of ideals in such rings.

Main results #

Left ideals in a matrix semiring #

def Ideal.matrix {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) :
Ideal (Matrix n n R)

The left ideal of matrices with entries in I โ‰ค R.

Equations
    Instances For
      @[simp]
      theorem Ideal.mem_matrix {R : Type u_1} [Semiring R] (n : Type u_2) [Fintype n] [DecidableEq n] (I : Ideal R) (M : Matrix n n R) :
      M โˆˆ matrix n I โ†” โˆ€ (i j : n), M i j โˆˆ I

      Jacobson radicals of left ideals in a matrix ring #

      theorem Ideal.single_mem_jacobson_matrix {R : Type u_1} [Ring R] {n : Type u_2} [Fintype n] [DecidableEq n] (I : Ideal R) (x : R) :
      x โˆˆ I.jacobson โ†’ โˆ€ (i j : n), Matrix.single i j x โˆˆ (matrix n I).jacobson

      A standard basis matrix is in $J(Mโ‚™(I))$ as long as its one possibly non-zero entry is in $J(I)$.

      theorem Ideal.matrix_jacobson_le {R : Type u_1} [Ring R] {n : Type u_2} [Fintype n] [DecidableEq n] (I : Ideal R) :

      For any left ideal $I โ‰ค R$, we have $Mโ‚™(J(I)) โ‰ค J(Mโ‚™(I))$.

      Two-sided ideals in a matrix ring #

      def RingCon.matrix {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocSemiring R] [Fintype n] (c : RingCon R) :
      RingCon (Matrix n n R)

      The ring congruence of matrices with entries related by c.

      Equations
        Instances For
          @[simp]
          theorem RingCon.matrix_apply {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocSemiring R] [Fintype n] {c : RingCon R} {M N : Matrix n n R} :
          (matrix n c) M N โ†” โˆ€ (i j : n), c (M i j) (N i j)
          @[simp]
          theorem RingCon.matrix_apply_single {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon R} {i j : n} {x y : R} :
          (matrix n c) (Matrix.single i j x) (Matrix.single i j y) โ†” c x y
          def RingCon.ofMatrix {R : Type u_1} {n : Type u_2} [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] (c : RingCon (Matrix n n R)) :

          The congruence relation induced by c on single i j.

          Equations
            Instances For
              @[simp]
              theorem RingCon.ofMatrix_rel {R : Type u_1} {n : Type u_2} [NonUnitalNonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon (Matrix n n R)} {x y : R} :
              c.ofMatrix x y โ†” โˆ€ (i j : n), c (Matrix.single i j x) (Matrix.single i j y)
              @[simp]
              theorem RingCon.matrix_ofMatrix {R : Type u_1} {n : Type u_2} [NonAssocSemiring R] [Fintype n] [DecidableEq n] (c : RingCon (Matrix n n R)) :

              Note that this does not apply to a non-unital ring, with counterexample where the elementwise congruence relation !![โŠค,โŠค;โŠค,(ยท โ‰ก ยท [PMOD 4])] is a ring congruence over Matrix (Fin 2) (Fin 2) 2โ„ค.

              theorem RingCon.ofMatrix_rel' {R : Type u_1} {n : Type u_2} [NonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon (Matrix n n R)} {x y : R} (i j : n) :

              A version of ofMatrix_rel for a single matrix index, rather than all indices.

              theorem RingCon.coe_ofMatrix_eq_relationMap {R : Type u_1} {n : Type u_2} [NonAssocSemiring R] [Fintype n] [DecidableEq n] {c : RingCon (Matrix n n R)} (i j : n) :
              โ‡‘c.ofMatrix = Relation.Map (โ‡‘c) (fun (x : Matrix n n R) => x i j) fun (x : Matrix n n R) => x i j

              The two-sided ideal of matrices with entries in I โ‰ค R.

              Equations
                Instances For
                  @[simp]
                  theorem TwoSidedIdeal.mem_matrix {R : Type u_1} (n : Type u_2) [NonUnitalNonAssocRing R] [Fintype n] (I : TwoSidedIdeal R) (M : Matrix n n R) :
                  M โˆˆ matrix n I โ†” โˆ€ (i j : n), M i j โˆˆ I

                  Two-sided ideals in $R$ correspond bijectively to those in $Mโ‚™(R)$. Given an ideal $I โ‰ค R$, we send it to $Mโ‚™(I)$. Given an ideal $J โ‰ค Mโ‚™(R)$, we send it to $\{Nแตขโฑผ โˆฃ โˆƒ N โˆˆ J\}$.

                  Equations
                    Instances For
                      theorem TwoSidedIdeal.coe_equivMatrix_symm_apply {R : Type u_1} {n : Type u_2} [NonAssocRing R] [Fintype n] [Nonempty n] [DecidableEq n] (I : TwoSidedIdeal (Matrix n n R)) (i j : n) :
                      โ†‘(equivMatrix.symm I) = {x : R | โˆƒ N โˆˆ I, N i j = x}

                      Two-sided ideals in $R$ are order-isomorphic with those in $Mโ‚™(R)$. See also equivMatrix.

                      Equations
                        Instances For
                          @[simp]
                          theorem TwoSidedIdeal.orderIsoMatrix_symm_apply_ringCon_r {R : Type u_1} {n : Type u_2} [NonAssocRing R] [Fintype n] [Nonempty n] [DecidableEq n] (J : TwoSidedIdeal (Matrix n n R)) (x y : R) :
                          ((RelIso.symm orderIsoMatrix) J).ringCon.toSetoid x y = โˆ€ (i j : n), J.ringCon (Matrix.single i j x) (Matrix.single i j y)
                          @[simp]
                          theorem TwoSidedIdeal.orderIsoMatrix_apply_ringCon_r {R : Type u_1} {n : Type u_2} [NonAssocRing R] [Fintype n] [Nonempty n] [DecidableEq n] (I : TwoSidedIdeal R) (M N : Matrix n n R) :
                          (orderIsoMatrix I).ringCon.toSetoid M N = โˆ€ (i j : n), I.ringCon (M i j) (N i j)

                          Jacobson radicals of two-sided ideals in a matrix ring #

                          theorem TwoSidedIdeal.jacobson_matrix {R : Type u_1} [Ring R] {n : Type u_2} [Fintype n] [DecidableEq n] (I : TwoSidedIdeal R) :

                          For any two-sided ideal $I โ‰ค R$, we have $J(Mโ‚™(I)) = Mโ‚™(J(I))$.