Documentation

Mathlib.Probability.Moments.CovarianceBilin

Covariance in Hilbert spaces #

Given a measure μ defined over a Banach space E, one can consider the associated covariance bilinear form which maps L₁ L₂ : StrongDual ℝ E to cov[L₁, L₂; μ]. This is called covarianceBilinDual μ and is defined in the CovarianceBilinDual file.

In the special case where E is a Hilbert space, each L : StrongDual ℝ E can be represented as the scalar product against some element of E. This motivates the definition of covarianceBilin, which is a continuous bilinear form mapping x y : E to cov[⟪x, ·⟫, ⟪y, ·⟫; μ].

Main definitions #

Tags #

covariance, Hilbert space, bilinear form

Covariance of a measure on an inner product space, as a continuous bilinear form.

Equations
    Instances For
      theorem ProbabilityTheory.covarianceBilin_apply_basisFun {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X : ιΩ} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (i j : ι) :
      ((covarianceBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) ((EuclideanSpace.basisFun ι ) i)) ((EuclideanSpace.basisFun ι ) j) = covariance (X i) (X j) μ
      theorem ProbabilityTheory.covarianceBilin_apply_basisFun_self {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X : ιΩ} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (i : ι) :
      ((covarianceBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) ((EuclideanSpace.basisFun ι ) i)) ((EuclideanSpace.basisFun ι ) i) = variance (X i) μ
      theorem ProbabilityTheory.covarianceBilin_apply_pi {ι : Type u_2} {Ω : Type u_3} [Fintype ι] { : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {X : ιΩ} (hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ) (x y : EuclideanSpace ι) :
      ((covarianceBilin (MeasureTheory.Measure.map (fun (ω : Ω) => WithLp.toLp 2 fun (x : ι) => X x ω) μ)) x) y = i : ι, j : ι, x.ofLp i * y.ofLp j * covariance (X i) (X j) μ

      The covariance operator of the measure μ. This is the bounded operator F : E →L[ℝ] E associated to the continuous bilinear form B : E →L[ℝ] E →L[ℝ] ℝ such that B x y = ∫ z, ⟪x, z⟫ * ⟪y, z⟫ ∂μ (see covarianceOperator_inner). Namely we have B x y = ⟪F x, y⟫.

      Note that the bilinear form B is the uncentered covariance bilinear form associated to the measure µ, which is not to be confused with the covariance bilinear form defined earlier in this file as covarianceBilin μ.

      Equations
        Instances For