The Moebius function on a unique factorization monoid #
We define the Moebius function on a unique factorization monoid.
Main definitions #
UniqueFactorizationMonoid.moebius: The Moebius function on a unique factorization monoid, defined to be((-1) ^ (factors a).card)ifais squarefree and0otherwise.
Main statements #
IsRelPrime.moebius_mul: The Moebius function is a multiplicative function.
noncomputable def
UniqueFactorizationMonoid.moebius
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
(a : α)
:
The Moebius function on a unique factorization monoid, defined to be
((-1) ^ (factors a).card) if a is squarefree and 0 otherwise.
Equations
Instances For
@[simp]
theorem
Squarefree.moebius_eq
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{a : α}
(ha : Squarefree a)
:
@[simp]
theorem
UniqueFactorizationMonoid.moebius_of_not_squarefree
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{a : α}
(ha : ¬Squarefree a)
:
theorem
UniqueFactorizationMonoid.moebius_zero
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
[Nontrivial α]
:
theorem
UniqueFactorizationMonoid.moebius_one
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
:
theorem
Associated.moebius_eq
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{a b : α}
(h : Associated a b)
:
theorem
IsUnit.moebius_eq
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{a : α}
(ha : IsUnit a)
:
theorem
Irreducible.moebius_eq
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{a : α}
(ha : Irreducible a)
:
theorem
IsRelPrime.moebius_mul
{α : Type u_1}
[CommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{a b : α}
(h : IsRelPrime a b)
: