Documentation

Mathlib.RingTheory.Unramified.LocalRing

Unramified algebras over local rings #

Main results #

Let S be an R algebra, p be a prime of R, and suppose q is the unique prime of S lying over R, then

Let A be an essentially of finite type R-algebra, q be a prime over p. Then A is unramified at p if and only if κ(q)/κ(p) is separable, and pS_q = qS_q.

theorem Localization.exists_awayMap_injective_of_localRingHom_injective {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {p : Ideal R} [p.IsPrime] {q : Ideal S} [q.IsPrime] (hRS : (RingHom.ker (algebraMap R S)).FG) [q.LiesOver p] (H : Function.Injective (localRingHom p q (algebraMap R S) )) :
rp, ∀ (r' : R), r r'Function.Injective (awayMap (algebraMap R S) r')
theorem Localization.exists_awayMap_bijective_of_localRingHom_bijective {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {p : Ideal R} [p.IsPrime] {q : Ideal S} [q.IsPrime] (hq : p.primesOver S = {q}) [Module.Finite R S] [q.LiesOver p] (hRS : (RingHom.ker (algebraMap R S)).FG) (H : Function.Bijective (localRingHom p q (algebraMap R S) )) :
rp, ∀ (r' : R), r r'Function.Bijective (awayMap (algebraMap R S) r')