Unramified algebras over local rings #
Main results #
Algebra.FormallyUnramified.iff_map_maximalIdeal_eq: LetRbe a local ring,Abe a localR-algebra essentially of finite type. ThenA/Ris unramified if and only ifκA/κRis separable, andm_R S = m_S.Algebra.isUnramifiedAt_iff_map_eq: LetAbe an essentially of finite typeR-algebra,qbe a prime overp. ThenAis unramified atpif and only ifκ(q)/κ(p)is separable, andpS_q = qS_q.
Let S be an R algebra, p be a prime of R, and suppose q is the unique prime of S
lying over R, then
Localization.localRingHom_injective_of_primesOver_eq_singleton: IfR ⊆ Sis integral, thenR_p → S_qis injective.Localization.localRingHom_surjective_of_primesOver_eq_singleton: SupposeSisR-finite and unramified atq. Ifκ(p) = κ(q)thenR_p → S_qis surjective.Localization.exists_awayMap_bijective_of_residueField_surjective: SupposeR ⊆ Sis finite and unramified atq. Ifκ(p) = κ(q)then there existsr ∉ psuch thatR[1/f] = S[1/f].
instance
Algebra.instFormallyUnramifiedResidueField_1
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[FormallyUnramified R S]
:
instance
Algebra.instFiniteResidueFieldOfFormallyUnramified
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[EssFiniteType R S]
[FormallyUnramified R S]
:
Stacks Tag 00UW ((2))
instance
Algebra.instIsSeparableResidueFieldOfFormallyUnramified
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[EssFiniteType R S]
[FormallyUnramified R S]
:
Stacks Tag 00UW ((2))
theorem
Algebra.FormallyUnramified.isField_quotient_map_maximalIdeal
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[EssFiniteType R S]
[FormallyUnramified R S]
:
IsField (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))
theorem
Algebra.FormallyUnramified.map_maximalIdeal
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[EssFiniteType R S]
[FormallyUnramified R S]
:
Stacks Tag 00UW ((1))
theorem
Algebra.FormallyUnramified.of_map_maximalIdeal
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[EssFiniteType R S]
[Algebra.IsSeparable (IsLocalRing.ResidueField R) (IsLocalRing.ResidueField S)]
(H : Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R) = IsLocalRing.maximalIdeal S)
:
theorem
Algebra.FormallyUnramified.iff_map_maximalIdeal_eq
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[IsLocalRing S]
[IsLocalHom (algebraMap R S)]
[EssFiniteType R S]
:
theorem
Algebra.isUnramifiedAt_iff_map_eq
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[EssFiniteType R S]
(p : Ideal R)
[p.IsPrime]
(q : Ideal S)
[q.IsPrime]
[q.LiesOver p]
:
Let A be an essentially of finite type R-algebra, q be a prime over p.
Then A is unramified at p if and only if κ(q)/κ(p) is separable, and pS_q = qS_q.
instance
Algebra.instIsSeparableResidueFieldOfIsUnramifiedAt
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[EssFiniteType R S]
(p : Ideal R)
[p.IsPrime]
(q : Ideal S)
[q.IsPrime]
[q.LiesOver p]
[IsUnramifiedAt R q]
:
instance
Algebra.instFiniteResidueFieldOfIsUnramifiedAt
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[EssFiniteType R S]
(p : Ideal R)
[p.IsPrime]
(q : Ideal S)
[q.IsPrime]
[q.LiesOver p]
[IsUnramifiedAt R q]
:
theorem
Localization.localRingHom_injective_of_primesOver_eq_singleton
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal R}
[p.IsPrime]
{q : Ideal S}
[q.IsPrime]
(hq : p.primesOver S = {q})
[Algebra.IsIntegral R S]
[FaithfulSMul R S]
:
Function.Injective ⇑(localRingHom p q (algebraMap R S) ⋯)
theorem
Localization.localRingHom_surjective_of_primesOver_eq_singleton
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal R}
[p.IsPrime]
{q : Ideal S}
[q.IsPrime]
(hq : p.primesOver S = {q})
[Module.Finite R S]
[q.LiesOver p]
[Algebra.IsUnramifiedAt R q]
(H : Function.Surjective ⇑(algebraMap p.ResidueField q.ResidueField))
:
Function.Surjective ⇑(localRingHom p q (algebraMap R S) ⋯)
theorem
Localization.exists_awayMap_injective_of_localRingHom_injective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal R}
[p.IsPrime]
{q : Ideal S}
[q.IsPrime]
(hRS : (RingHom.ker (algebraMap R S)).FG)
[q.LiesOver p]
(H : Function.Injective ⇑(localRingHom p q (algebraMap R S) ⋯))
:
∃ r ∉ p, ∀ (r' : R), r ∣ r' → Function.Injective ⇑(awayMap (algebraMap R S) r')
theorem
Localization.exists_awayMap_bijective_of_localRingHom_bijective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal R}
[p.IsPrime]
{q : Ideal S}
[q.IsPrime]
(hq : p.primesOver S = {q})
[Module.Finite R S]
[q.LiesOver p]
(hRS : (RingHom.ker (algebraMap R S)).FG)
(H : Function.Bijective ⇑(localRingHom p q (algebraMap R S) ⋯))
:
∃ r ∉ p, ∀ (r' : R), r ∣ r' → Function.Bijective ⇑(awayMap (algebraMap R S) r')
theorem
Localization.exists_awayMap_bijective_of_residueField_surjective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{p : Ideal R}
[p.IsPrime]
{q : Ideal S}
[q.IsPrime]
(hq : p.primesOver S = {q})
[Module.Finite R S]
[FaithfulSMul R S]
[q.LiesOver p]
[Algebra.IsUnramifiedAt R q]
(H : Function.Surjective ⇑(algebraMap p.ResidueField q.ResidueField))
:
∃ r ∉ p, ∀ (r' : R), r ∣ r' → Function.Bijective ⇑(awayMap (algebraMap R S) r')