Documentation

Mathlib.Topology.ContinuousMap.Compact

Continuous functions on a compact space #

Continuous functions C(α, β) from a compact space α to a metric space β are automatically bounded, and so acquire various structures inherited from α →ᵇ β.

This file transfers these structures, and restates some lemmas characterising these structures.

If you need a lemma which is proved about α →ᵇ β but not for C(α, β) when α is compact, you should restate it here. You can also use ContinuousMap.equivBoundedOfCompact to move functions back and forth.

When α is compact, the bounded continuous maps α →ᵇ β are equivalent to C(α, β).

Equations
    Instances For

      When α is compact, the bounded continuous maps α →ᵇ 𝕜 are additively equivalent to C(α, 𝕜).

      Equations
        Instances For

          When α is compact, and β is a metric space, the bounded continuous maps α →ᵇ β are isometric to C(α, β).

          Equations
            Instances For
              theorem ContinuousMap.dist_apply_le_dist {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} (x : α) :
              dist (f x) (g x) dist f g

              The pointwise distance is controlled by the distance between functions, by definition.

              theorem ContinuousMap.dist_le {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } (C0 : 0 C) :
              dist f g C ∀ (x : α), dist (f x) (g x) C

              The distance between two functions is controlled by the supremum of the pointwise distances.

              theorem ContinuousMap.dist_le_iff_of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } [Nonempty α] :
              dist f g C ∀ (x : α), dist (f x) (g x) C
              theorem ContinuousMap.dist_lt_iff_of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } [Nonempty α] :
              dist f g < C ∀ (x : α), dist (f x) (g x) < C
              theorem ContinuousMap.dist_lt_of_nonempty {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } [Nonempty α] (w : ∀ (x : α), dist (f x) (g x) < C) :
              dist f g < C
              theorem ContinuousMap.dist_lt_iff {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} {C : } (C0 : 0 < C) :
              dist f g < C ∀ (x : α), dist (f x) (g x) < C
              theorem ContinuousMap.dist_eq_iSup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} :
              dist f g = ⨆ (x : α), dist (f x) (g x)
              theorem ContinuousMap.nndist_eq_iSup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} :
              nndist f g = ⨆ (x : α), nndist (f x) (g x)
              theorem ContinuousMap.edist_eq_iSup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [CompactSpace α] [PseudoMetricSpace β] {f g : C(α, β)} :
              edist f g = ⨆ (x : α), edist (f x) (g x)
              theorem ContinuousMap.dist_le_two_norm {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) (x y : α) :
              dist (f x) (f y) 2 * f

              Distance between the images of any two points is at most twice the norm of the function.

              theorem ContinuousMap.norm_le {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) {C : } (C0 : 0 C) :
              f C ∀ (x : α), f x C

              The norm of a function is controlled by the supremum of the pointwise norms.

              theorem ContinuousMap.norm_le_of_nonempty {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) [Nonempty α] {M : } :
              f M ∀ (x : α), f x M
              theorem ContinuousMap.norm_lt_iff {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) {M : } (M0 : 0 < M) :
              f < M ∀ (x : α), f x < M
              theorem ContinuousMap.nnnorm_lt_iff {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) {M : NNReal} (M0 : 0 < M) :
              f‖₊ < M ∀ (x : α), f x‖₊ < M
              theorem ContinuousMap.norm_lt_iff_of_nonempty {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] (f : C(α, E)) [Nonempty α] {M : } :
              f < M ∀ (x : α), f x < M
              instance ContinuousMap.normedSpace {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] {𝕜 : Type u_5} [NormedField 𝕜] [NormedSpace 𝕜 E] :
              NormedSpace 𝕜 C(α, E)
              Equations

                When α is compact and 𝕜 is a normed field, the 𝕜-algebra of bounded continuous maps α →ᵇ β is 𝕜-linearly isometric to C(α, β).

                Equations
                  Instances For
                    @[simp]
                    theorem ContinuousMap.linearIsometryBoundedOfCompact_apply_apply {α : Type u_1} {E : Type u_3} [TopologicalSpace α] [CompactSpace α] [SeminormedAddCommGroup E] {𝕜 : Type u_4} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] (f : C(α, E)) (a : α) :
                    ((linearIsometryBoundedOfCompact α E 𝕜) f) a = f a
                    @[simp]
                    theorem ContinuousMap.nnnorm_smul_const {α : Type u_1} [TopologicalSpace α] [CompactSpace α] {R : Type u_4} {β : Type u_5} [SeminormedAddCommGroup β] [SeminormedRing R] [Module R β] [NormSMulClass R β] (f : C(α, R)) (b : β) :
                    @[simp]
                    theorem ContinuousMap.norm_smul_const {α : Type u_1} [TopologicalSpace α] [CompactSpace α] {R : Type u_4} {β : Type u_5} [SeminormedAddCommGroup β] [SeminormedRing R] [Module R β] [NormSMulClass R β] (f : C(α, R)) (b : β) :
                    instance ContinuousMap.instNormedAlgebra {α : Type u_1} [TopologicalSpace α] [CompactSpace α] {𝕜 : Type u_4} {γ : Type u_5} [NormedField 𝕜] [SeminormedRing γ] [NormedAlgebra 𝕜 γ] :
                    Equations

                      We now set up some declarations making it convenient to use uniform continuity.

                      theorem ContinuousMap.uniform_continuity {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) (ε : ) (h : 0 < ε) :
                      δ > 0, ∀ {x y : α}, dist x y < δdist (f x) (f y) < ε
                      def ContinuousMap.modulus {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) (ε : ) (h : 0 < ε) :

                      An arbitrarily chosen modulus of uniform continuity for a given function f and ε > 0.

                      Equations
                        Instances For
                          theorem ContinuousMap.modulus_pos {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) {ε : } {h : 0 < ε} :
                          0 < f.modulus ε h
                          theorem ContinuousMap.dist_lt_of_dist_lt_modulus {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [CompactSpace α] [PseudoMetricSpace β] (f : C(α, β)) (ε : ) (h : 0 < ε) {a b : α} (w : dist a b < f.modulus ε h) :
                          dist (f a) (f b) < ε

                          Local normal convergence #

                          A sum of continuous functions (on a locally compact space) is "locally normally convergent" if the sum of its sup-norms on any compact subset is summable. This implies convergence in the topology of C(X, E) (i.e. locally uniform convergence).

                          theorem ContinuousMap.summable_of_locally_summable_norm {X : Type u_1} [TopologicalSpace X] [LocallyCompactSpace X] {E : Type u_2} [NormedAddCommGroup E] [CompleteSpace E] {ι : Type u_3} {F : ιC(X, E)} (hF : ∀ (K : TopologicalSpace.Compacts X), Summable fun (i : ι) => restrict (↑K) (F i)) :

                          Star structures #

                          In this section, if β is a normed ⋆-group, then so is the space of continuous functions from α to β, by using the star operation pointwise.

                          Furthermore, if α is compact and β is a C⋆-ring, then C(α, β) is a C⋆-ring.