module đ | CompOp | 1838 mathmath: Pi.comul_eq_adjoint, det_toContinuousLinearMap, LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, lTensor_ker_subtype_tensorKerEquiv_symm, isSymm_zero, RootPairing.InvariantForm.apply_reflection_reflection, CliffordAlgebra.contractRight_algebraMap_mul, restrictScalars_toMatrix, Orientation.kahler_map_complex, RootPairing.rootForm_self_smul_coroot, LieDerivation.IsKilling.ad_mem_ker_killingForm_ad_range_of_mem_orthogonal, apply_symm_toPerfPair_self, SeparatingRight.toMatrixâ', RootPairing.RootPositiveForm.algebraMap_rootLength, SemimoduleCat.Hom.homâ_apply, charpoly_def, LinearEquiv.congrRightâ_refl, iSupIndep.dfinsupp_lsum_injective, BilinForm.dualSubmoduleParing_spec, Module.End.exp_mul_of_derivation, PiTensorProduct.lift_reindex, BilinForm.zero_right, dot_self_cross, CliffordAlgebra.contractRight_algebraMap, DFinsupp.lsum_lsingle, Matrix.toLin_kronecker, Matrix.toLin'_symm, Matrix.SeparatingLeft.toBilin', detAux_def'', RootPairing.posRootForm_posForm_apply_apply, QuadraticMap.smul_toBilin, TensorProduct.LieModule.liftLie_apply, BilinForm.dualSubmoduleToDual_apply_apply, PiTensorProduct.lift.tprod, CliffordAlgebra.contractRight_eq, RootPairing.four_nsmul_coPolarization_compl_polarization_apply_root, BilinForm.toMatrix_toBilin, Module.Basis.end_repr_apply, adjoint_adjoint, Matrix.SeparatingRight.toLinearMapâ, IsReflective.regular, BilinForm.symmCompOfNondegenerate_left_apply, PolyEquivTensor.toFunBilinear_apply_eq_sum, BilinForm.dualSubmoduleToDual_injective, Rep.MonoidalClosed.linearHomEquiv_symm_hom, instIsTorsionFree, Subspace.dualAnnihilator_dualAnnihilator_eq_map, LinearEquiv.flip_apply, PiTensorProduct.liftAlgHom_apply, BilinForm.toMatrix_symm, SimpleGraph.lapMatrix_toLinearMapâ', RootPairing.coroot_eq_polarizationEquiv_apply_root, Nondegenerate.congr, dotProductEquiv_symm_apply, addMonoidHomLequivNat_symm_apply, isNilRegular_iff_natTrailingDegree_charpoly_eq_nilRank, Matrix.separatingRight_toLinearMapâ'_iff, Complex.kahler, CliffordAlgebra.changeForm_comp_changeForm, LieAlgebra.IsKilling.restrict_killingForm_eq_sum, Complex.areaForm, RootPairing.RootPositiveForm.zero_lt_posForm_apply_root, CStarModule.innerââ_apply, PiTensorProduct.dualDistribEquivOfBasis_symm_apply, QuadraticMap.canLift, Polynomial.toMatrix_sylvesterMap', Matrix.toLinearMapRight'_mul, ContinuousLinearMap.toLinearMapââ_injective, Subspace.instModuleDualFiniteDimensional, isPositive_adjoint_comp_self, BilinForm.IsAlt.neg_eq, BilinMap.polar_toQuadraticMap, isAdjointPair_iff_comp_eq_complâ, IsPerfPair.bijective_left, Submodule.map_dualCoannihilator_le, Matrix.separatingRight_toLinearMapâ_iff, LinearEquiv.coe_toLinearMap_flip, CommRing.Pic.mk_dual, Matrix.spectrum_toEuclideanLin, Matrix.iSup_eigenspace_toLin'_diagonal_eq_top, addMonoidHomLequivInt_apply, Module.Basis.toDual_linearCombination_left, Module.Basis.constr_comp, LinearEquiv.congrRight_symm, Module.Basis.constr_symm_apply, mapMatrixLinear_apply, BilinForm.toMatrixAux_eq, LieModule.trace_toEnd_eq_zero_of_mem_lcs, Matrix.toLinearMapâ'_comp, PiTensorProduct.lift_reindex_symm, RootPairing.root_coroot_two, Representation.finsupp_apply, toMatrix_apply', llcomp_apply, toMatrixâ_mul, BilinForm.smul_left_of_tower, Orientation.kahler_comp_rightAngleRotation', LieAlgebra.LoopAlgebra.twoCochainOfBilinear_apply_apply, Module.Basis.dualBasis_coord_toDualEquiv_apply, Matrix.repr_toLin, LieModule.traceForm_eq_sum_genWeightSpaceOf, LocalizedModule.restrictScalars_map_eq, polar_eq_iInter, tensorKer_tmul, TensorProduct.sum_tmul_basis_right_injective, Subspace.dualLift_of_subtype, RootPairing.EmbeddedG2.shortAddLongRoot_shortRoot, compRight_apply, Matrix.liftLinear_single, Orientation.inner_mul_inner_add_areaForm_mul_areaForm, Subspace.dualRestrict_comp_dualLift, Orientation.areaForm_le, BilinForm.congr_apply, LinearEquiv.conj_trans, LieModule.traceForm_eq_sum_finrank_nsmul', mul_apply_apply, BilinForm.toMatrix_compRight, RootPairing.rootSpan_dualAnnihilator_le_ker_rootForm, adjoint_innerââ_apply, BilinMap.toQuadraticMap_add, Submodule.dualQuotEquivDualAnnihilator_apply, ContinuousLinearMap.toBilinForm_apply, LinearEquiv.conj_apply_apply, adjoint_eq_toCLM_adjoint, BilinForm.IsNonneg.nonneg, LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, bilinearIteratedFDerivTwo_eq_iteratedFDeriv, IsPosSemidef.add, Matrix.toLinearMapâ_toMatrixâ, toMatrix_one, IsReflective.smul_coroot, QuotSMulTop.equivTensorQuot_naturality, LieAlgebra.IsKilling.rootSystem_coroot_apply, complâ_apply, IsReflective.apply_self_mul_coroot_apply, Module.Flat.ker_lTensor_eq, isSelfAdjoint_toContinuousLinearMap_iff, cross_cross, Matrix.separatingRight_toBilin_iff, Matrix.spectrum_toLpLin, RootPairing.InvariantForm.pairing_mul_eq_pairing_mul_swap, Submodule.quotDualCoannihilatorToDual_apply, Module.Dual.eval_comp_comp_evalEquiv_eq, CategoryTheory.Linear.comp_apply, BilinForm.toMatrix'_symm, LinearEquiv.map_mem_invtSubmodule_conj_iff, QuadraticMap.polarBilin_prod, mem_isPairSelfAdjointSubmodule, Submodule.dualPairing_apply, NonUnitalAlgHom.coe_lmul_eq_mul, Matrix.toLin_mul_apply, tensorEqLocusEquiv_apply, toMatrix_distrib_mul_action_toLinearMap, domRestrict'_apply, Module.dualMap_dualMap_eq_iff, ModuleCat.Iso.homCongr_eq_arrowCongr, AlgEquiv.linearEquivConj_mulLeft, PiToModule.fromEnd_apply, TensorPower.gMul_eq_coe_linearMap, BilinForm.IsRefl.groupSMul, BilinForm.toMatrix'_apply, Module.Basis.dual_rank_eq, BilinMap.toQuadraticMapAddMonoidHom_apply, BilinForm.SeparatingRight.toMatrix, nondegenerate_toLinearMapâ'_of_det_ne_zero', LinearEquiv.congrRightâ_apply, cross_self, CliffordAlgebra.contractRight_mul_Κ, Matrix.Nondegenerate.toLinearMapâ, rTensor_injective_iff_lcomp_surjective, TensorProduct.gradedMul_assoc, contractLeft_assoc_coevaluation, Module.Basis.flag_le_ker_dual, LieModule.lowerCentralSeries_one_inf_center_le_ker_traceForm, Matrix.intrinsicStar_toLin', coe_toContinuousLinearMap', BilinMap.toQuadraticMap_zero, SemimoduleCat.Iso.homCongr_eq_arrowCongr, LinearEquiv.dualMap_trans, Module.Basis.coe_dualBasis, QuadraticMap.toBilinHom_apply, ExteriorAlgebra.liftAlternating_Κ_mul, tensorKer_coe, Real.vector_fourierIntegral_eq_integral_exp_smul, RootPairing.coPolarization_apply_eq_zero_iff, Fintype.linearIndependent_iff', QuadraticMap.associated_eq_self_apply, QuadraticMap.toMatrix'_comp, trace_mul_cycle, SimpleGraph.card_connectedComponent_eq_finrank_ker_toLin'_lapMatrix, ker_localizedMap_eq_localized'_ker, exteriorPower.alternatingMapLinearEquiv_ΚMulti, star_dotProduct_toMatrixâ_mulVec, RootPairing.root_coroot_eq_pairing, IsBaseChange.linearMapLeftRightHom_comp_apply, TensorProduct.AlgebraTensorModule.lTensor_comp_cancelBaseChange, Subspace.dualAnnihilator_dualAnnihilator_eq, TensorProduct.AlgebraTensorModule.lTensor_id, zero_prodMap_dualTensorHom, sum_repr_mul_repr_mulââ, TensorProduct.AlgebraTensorModule.rTensor_one, innerââ_apply_apply, ringLmapEquivSelf_symm_apply, RootPairing.self_comp_coPolarization_eq_corootForm, QuadraticMap.associated_rightInverse, Matrix.toBilin_symm, spectrum_toMatrix', LieModule.trace_toEnd_genWeightSpace, Real.smul_map_diagonal_volume_pi, Algebra.traceMatrix_apply, RootPairing.span_coroot'_eq_top, toMatrix_rotation, PiTensorProduct.toDualContinuousMultilinearMap_apply_apply, BilinForm.sum_right, separatingRight_congr_iff, Module.eval_apply_injective, AlgHom.mulLeftRightMatrix.inv_comp, Submodule.dualAnnihilator_map_dualMap_le, LieAlgebra.IsKilling.ker_traceForm_eq_bot_of_isCartanSubalgebra, le_comap_range_lTensor, Submodule.dualCopairing_eq, polar_singleton, LieModule.shiftedGenWeightSpace.toEnd_eq, TensorProduct.liftAux_tmul, RootPairing.RootPositiveForm.zero_lt_posForm_iff, QuotSMulTop.equivTensorQuot_naturality_mk, RootPairing.toLinearMap_apply_CoPolarization, BilinForm.ext_iff_of_isSymm, dot_cross_self, LieModule.Cohomology.twoCochain_alt, Module.endTensorEndAlgHom_apply, Matrix.toLpLin_mul_same, mem_skewAdjointSubmodule, Submodule.quotDualCoannihilatorToDual_nondegenerate, RootPairing.Hom.weight_coweight_transpose, Module.DualBases.coe_dualBasis, CliffordAlgebra.changeForm_self_apply, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom, Submodule.mem_dualAnnihilator, PiTensorProduct.mul_assoc, toMatrix_baseChange, RootPairing.toPerfPair_comp_root, Submodule.dualAnnihilator_eq_top_iff, TensorProduct.adjoint_map, IsContPerfPair.bijective_left, LinearEquiv.conj_comp, TensorProduct.dualDistrib_dualDistribInvOfBasis_right_inverse, CliffordAlgebra.contractRight_comm, trace_eq_matrix_trace_of_finset, adjoint_toContinuousLinearMap, Matrix.SeparatingLeft.toLinearMapâ', rTensor_comp_flip_mk, TensorProduct.dualDistrib_apply_comm, BilinForm.IsAlt.eq_of_add_add_eq_zero, Submodule.coe_dualCoannihilator_span, Finsupp.llift_apply, ExteriorAlgebra.liftAlternating_comp, LinearEquiv.conj_refl, CharacterModule.curry_apply_apply, map_subâ, finrank_algHom, Module.Basis.toDualEquiv_apply, CliffordAlgebra.changeFormAux_changeFormAux, Fintype.bilinearCombination_apply_single, BilinForm.nondegenerate_toMatrix_iff, toMatrixâââ'_symm, Ideal.range_mul', dotProductEquiv_apply_apply, rank_diagonal, ker_localizedMap_eq_localizedâ_ker, QuotSMulTop.map_comp_mkQ, RootPairing.injOn_dualMap_subtype_span_root_coroot, RootPairing.disjoint_corootSpan_ker_corootForm, TensorProduct.flip_mk_surjective, separatingRight_toMatrixâ'_iff, Matrix.toEuclideanLin_apply, Submodule.biSup_eq_range_dfinsupp_lsum, CliffordAlgebra.changeForm.add_proof, ContinuousLinearMap.toLinearMapââ_apply, Algebra.toMatrix_lmul_eq, LieModule.traceForm_eq_zero_of_isNilpotent, isAdjointPair_toLinearMapâ, LinearEquiv.congrLeft_symm_apply, LieModule.Cohomology.dââ_apply, BilinForm.sub_left, exteriorPower.alternatingMapLinearEquiv_symm_map, LieIdeal.coe_killingCompl_top, Rep.homEquiv_apply_hom, ModN.basis_apply_eq_mkQ, Matrix.liftLinear_singleLinearMap, LieModule.Cohomology.dââ_apply_apply, FiniteDimensional.mem_span_of_iInf_ker_le_ker, Matrix.liftLinear_comp_singleLinearMap, ofIsComplProd_apply, mul_apply', toMatrix_symm, Matrix.toBilin_apply, toMatrixâ'_complââ, RootPairing.flip_comp_polarization_eq_rootForm, prodEquiv_apply, Module.Basis.toLin_toMatrix, TensorProduct.AlgebraTensorModule.restrictScalars_lTensor, flip_injective_iffâ, Matrix.toLinearEquivRight'OfInv_symm_apply, Pi.counit_eq_adjoint, BilinForm.coeFnAddMonoidHom_apply, LocalizedModule.map_surjective, IsLocalizedModule.map_linearMap_of_isLocalization, Matrix.toLin'_mul_apply, Orientation.areaForm_to_volumeForm, Matrix.toLinearMapâââ'_single, LieAlgebra.bracket_ofTwoCocycle, Matrix.nondegenerate_toBilin'_iff, TensorProduct.AlgebraTensorModule.restrictScalars_curry, trace_eq_contract_of_basis', BilinForm.congr_comp, Algebra.traceForm_apply, CliffordAlgebra.changeFormEquiv_symm, BilinForm.apply_dualBasis_left, QuadraticMap.add_toBilin, Basis.linearEquiv_dual_iff_finiteDimensional, Orientation.areaForm_neg_orientation, toMatrix'_toLin', MultilinearMap.curryRight_apply, Module.mapEvalEquiv_apply, CliffordAlgebra.changeForm.zero_proof, RootPairing.ker_copolarization_eq_ker_corootForm, TensorProduct.toMatrix_assoc, Subspace.finrank_dualCoannihilator_eq, applyâ'_apply_apply, Matrix.toLinearMapâ'_apply', RootPairing.exists_ge_zero_eq_rootForm, PiToModule.fromEnd_injective, coe_lTensorHom, SimpleGraph.lapMatrix_toLinearMapâ'_apply'_eq_zero_iff_forall_reachable, toMatrix_id, LinearIsometryEquiv.adjoint_toLinearMap_eq_symm, BilinForm.apply_eq_dotProduct_toMatrix_mulVec, Orientation.kahler_eq_zero_iff, eq_adjoint_iff_basis_left, BilinForm.isNonneg_def, ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply, RootPairing.RootPositiveForm.posForm_apply_root_root_le_zero_iff, ProperCone.mem_dual, Subspace.finiteDimensional_quot_dualCoannihilator_iff, QuadraticMap.associated_prod, SemimoduleCat.ofHomâ_hom_apply_hom, toMatrix_transpose, toMatrixâ_toLinearMapâââ, IsLocalizedModule.map_surjective_iff_localizedModuleMap_surjective, LieIdeal.mem_killingCompl, Orientation.areaForm_swap, ContinuousLinearMap.holderâ_apply_apply, isSymm_dualProd, trace_smulRight, IsRefl.ker_eq_bot_iff_ker_flip_eq_bot, Matrix.SpecialLinearGroup.toLin'_symm_to_linearMap, Orientation.kahler_swap, Matrix.toLinearMapâ'Aux_single, Matrix.vecMulBilin_apply, mkâ'ââ_apply, cross_anticomm, dualMap_surjective_of_injective, Rep.ihom_ev_app_hom, IsBaseChange.endHom_toMatrix, Ideal.range_mul, ModuleCat.homLinearEquiv_symm_apply, cross_cross_eq_smul_sub_smul, Real.map_matrix_volume_pi_eq_smul_volume_pi, Submodule.dualAnnihilator_anti, BilinForm.sum_left, GradedTensorProduct.mul_def, QuadraticForm.polarBilin_tmul, LieAlgebra.hasCentralRadical_and_of_isIrreducible_of_isFaithful, LocalizedModule.map_injective, QuadraticMap.Ring.polarBilin_pi, RootPairing.toLinearMap_apply_apply_Polarization, BilinForm.Nondegenerate.congr, Rep.MonoidalClosed.linearHomEquivComm_hom, SemimoduleCat.homLinearEquiv_apply, TensorProduct.equivFinsuppOfBasisLeft_symm, IsProj.eq_conj_prodMap, flip_surjective_iffâ, tensorEqLocus_coe, ExteriorAlgebra.liftAlternatingEquiv_symm_apply, TensorProduct.curry_injective, Matrix.toLinearMapâ'_apply, lTensorHomEquivHomLTensor_apply, BilinForm.separatingLeft_toMatrix'_iff, extendScalarsOfIsLocalizationEquiv_apply, rank_lt_rank_dual', QuotSMulTop.map_surjective, Module.dual_finite, trace_mul_comm, trace_eq_contract, Orientation.kahler_comp_rightAngleRotation, toKerLocalized_isLocalizedModule, CliffordAlgebra.changeFormAux_apply_apply, LinearEquiv.arrowCongr_symm_apply, lcomp_injective_of_surjective, trace_eq_sum_inner, BilinForm.not_nondegenerate_zero, Module.FinitePresentation.linearEquivMap_symm_apply, restrictScalarsâ_apply, Subspace.dualPairing_nondegenerate, Matrix.isNilpotent_toLin'_iff, trace_one, homTensorHomEquiv_apply, QuadraticMap.associated_apply, IsModuleTopology.continuous_bilinear_of_pi_fintype, TensorProduct.mk_apply, Matrix.toLinearEquiv'_symm_apply, BilinForm.IsSymm.eq, BilinForm.mul_toMatrix'_mul, Matrix.toLin_symm, SeparatingDual.dualMap_surjective_iff, InnerProductGeometry.norm_toLp_symm_crossProduct, dualTensorHom_apply, BilinForm.mul_toMatrix_mul, isNoetherian_linearMap_pi, Module.Invertible.rTensorEquiv_apply_apply, localized'_range_eq_range_localizedMap, lTensorHomEquivHomLTensor_toLinearMap, trace_comp_eq_mul_of_commute_of_isNilpotent, Module.Basis.linearMap_apply, Submodule.dualCoannihilator_iSup_eq, Module.comap_eval_surjective, Matrix.toLinearMapâ_complââ, dualMap_id, ExteriorAlgebra.liftAlternating_ΚMulti, linearIndependent_algHom_toLinearMap', CliffordAlgebra.changeForm_Κ_mul, LieModule.traceForm_lieSubalgebra_mk_right, lsum_apply, Matrix.toLinearMapâââ'_symm, localized'_ker_eq_ker_localizedMap, mkâ_apply, polyCharpoly_baseChange, CliffordAlgebra.changeForm_self, isAlt_iff_eq_neg_flip, RootPairing.RootPositiveForm.exists_eq, RootPairing.corootSpan_map_flip_toPerfPair, toLinearMap_toContPerfPair, TensorProduct.AlgebraTensorModule.rTensor_comp, coevaluation_apply_one, MatrixEquivTensor.toFunBilinear_apply, isSymmetric_adjoint_mul_self, Submodule.dualRestrict_ker_eq_dualAnnihilator, IsBaseChange.transvection, toBilin'Aux_toMatrixAux, LieAlgebra.IsKilling.invtSubmoduleToLieIdeal_top, IsLocalRing.map_tensorProduct_mk_eq_top, Module.Dual.eval_apply, toMatrixâ_complâ, DFinsupp.sum_mapRange_index.linearMap, InnerProductSpace.trace_rankOne, rTensorHomEquivHomRTensor_apply, trace_eq_contract_apply, ExteriorAlgebra.liftAlternatingEquiv_apply, dualTensorHomEquivOfBasis_symm_cancel_right, Matrix.toLpLin_symm_pow, IsLocalization.tensorProduct_isLocalizedModule, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', RootPairing.rootForm_root_self, IsBaseChange.det_endHom, polyCharpolyAux_map_eval, Matrix.toLinearMapâââ'_aux_eq, IsLocalizedModule.mapExtendScalars_apply_apply, CommRing.Pic.inv_eq_dual, BilinForm.isRefl_zero, IsPerfectCompl.isCompl_right, KaehlerDifferential.linearMapEquivDerivation_apply_apply, BilinForm.tensorDistribEquiv_toLinearMap, Module.preReflection_preReflection, Matrix.linfty_opNNNorm_toMatrix, Module.Basis.end_apply_apply, Module.Basis.coe_constrL, QuadraticMap.toQuadraticMap_associated, Module.Invertible.bijective_curry, Algebra.traceForm_toMatrix, trace_eq_zero_of_mapsTo_ne, cross_anticomm', Matrix.toLin_scalar, Module.rank_linearMap, adjoint_rTensor, toBilin'Aux_toMatrixAux, adjoint_inner_right, BilinForm.dotProduct_toMatrix_mulVec, BilinForm.tensorDistrib_tmul, TensorProduct.AlgebraTensorModule.mk_apply, trace_transpose', IntrinsicStar.starLinearEquiv_eq_arrowCongr, IsTensorProduct.equiv_symm_apply, Projectivization.cross_mk_of_cross_ne_zero, Matrix.toLpLin_one, RootPairing.InvariantForm.exists_apply_eq_or, Module.Dual.transpose_apply, Module.Invertible.instDual, isPosSemidef_iff_posSemidef_toMatrix, RootPairing.zero_le_rootForm, TensorProduct.AlgebraTensorModule.rTensor_tmul, Algebra.PreSubmersivePresentation.aevalDifferential_toMatrix'_eq_mapMatrix_jacobiMatrix, IsLocalizedModule.map_comp', QuadraticMap.toBilin_apply, Submodule.comap_dualAnnihilator, linearIndependent_algHom_toLinearMap, KaehlerDifferential.linearMapEquivDerivation_symm_apply, BilinForm.smul_right_of_tower, BilinForm.tensorDistribEquiv_apply, linearIndependent_toLinearMap, Matrix.piLp_ofLp_toEuclideanLin, BilinForm.toMatrix_apply, LieAlgebra.killingForm_apply_eq_zero_of_mem_rootSpace_of_add_ne_zero, RootPairing.reflectionPerm_coroot, TensorProduct.mapâ_apply_tmul, LieSubmodule.traceForm_eq_zero_of_isTrivial, PowerBasis.constr_pow_algebraMap, dualProd_apply_apply, lieEquivMatrix'_apply, TensorProduct.dualDistribEquivOfBasis_symm_apply, BilinForm.toMatrix_toBilin, Module.dual_free, isSymm_def, Matrix.toPerfectPairing_apply_apply, SimpleGraph.linearIndependent_lapMatrix_ker_basis_aux, BilinForm.IsRefl.smul, BilinForm.IsNonneg.add, LieDerivation.exp_map_apply, comprâ_apply, minpoly_toMatrix', BilinForm.IsPosSemidef.smul, trace_prodMap, Submodule.iSup_dualAnnihilator_le_iInf, liftBaseChangeEquiv_symm_apply, LieAlgebra.IsKilling.instIsCrystallographicSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, QuadraticForm.dualProd_apply, Fintype.bilinearCombination_apply, toMatrixâ_comp, lsmul_flip_apply, Matrix.SeparatingRight.toLinearMapâ', Module.Basis.toDual_ker, killingForm_eq_zero_of_mem_zeroRoot_mem_posFitting, Module.Basis.dualBasis_apply_self, TensorProduct.lift.tmul', PointedCone.mem_dual, Submodule.mem_iSup_iff_exists_dfinsupp, Submodule.mapâ_map_left, prodEquiv_symm_apply, BilinForm.add_left, tensorProductEnd_apply, lift_rank_lt_rank_dual', Matrix.toLpLin_pow, trace_eq_contract', RootPairing.toLinearMap_apply_PolarizationIn, Module.finrank_linearMap, LinearEquiv.symm_flip, InnerProductSpace.AlgebraOfCoalgebra.mul_def, BilinForm.separatingRight_toMatrix'_iff, Matrix.isUnit_toLin'_iff, Module.piEquiv_apply_apply, RootPairing.EmbeddedG2.long_eq_three_mul_short, BilinForm.smul_left, range_dualMap_eq_dualAnnihilator_ker, Submodule.dualCoannihilator_map_linearEquiv_flip, RootPairing.rootSpan_map_toPerfPair, innerâ_apply, RootPairing.GeckConstruction.trace_toEnd_eq_zero, Matrix.toLin'_mul, Submodule.iSup_eq_range_dfinsupp_lsum, isNilpotent_toMatrix_iff, BilinForm.lieInvariant_iff, LieModule.Cohomology.twoCochain_skew, BilinForm.dotProduct_toMatrix_mulVec, Module.End.rTensorAlgHom_apply_apply, det_eq_det_toMatrix_of_finset, LieModule.traceForm_comm, LieSubmodule.trace_eq_trace_restrict_of_le_idealizer, toMatrix_reindexRange, ExteriorAlgebra.liftAlternating_apply_ΚMulti, Matrix.ofLp_toLpLin, Module.range_piEquiv, Matrix.toMatrixâAux_toLinearMapâ'Aux, Matrix.toBilin'_symm, Module.Basis.dualBasis_equivFun, PiTensorProduct.piTensorHomMap_tprod_tprod, RootPairing.corootSpan_dualAnnihilator_map_eq, toMatrix_smulBasis_left, VertexOperator.ncoeff_apply, Module.Dual.transpose_comp, BilinForm.isSymm_iff_flip, RootPairing.corootForm_apply_apply, flip_bijective_iffâ, flip_bijective_iffâ, BilinForm.mem_dualSubmodule, range_dualMap_dual_eq_span_singleton, det_toLin', Matrix.kroneckerMapBilinear_apply_apply, SeparatingRight.congr, Ideal.pi_tensorProductMk_quotient_surjective, Matrix.rank_eq_finrank_range_toLin, Matrix.toLinearMapRight'_mul_apply, BilinForm.toMatrix_comp, CliffordAlgebra.EvenHom.contract, Module.Basis.linearCombination_dualBasis, PiTensorProduct.norm_eval_le_injectiveSeminorm, transpose_dualTensorHom, Matrix.toLin_mul, Rep.indResAdjunction_counit_app_hom_hom, FGModuleCat.FGModuleCatDual_obj, Matrix.toLin_pow, LieSubmodule.mem_baseChange_iff, QuadraticMap.associated_tmul, Module.Free.linearMap, Matrix.toLin_self, Module.Finite.linearMap, Submodule.dualCoannihilator_bot, LieDerivation.exp_apply, Finsupp.lsum_single, BilinForm.neg_left, BilinForm.sum_repr_mul_repr_mul, Orientation.kahler_neg_orientation, QuadraticForm.dualProdIsometry_invFun, separatingLeft_toMatrixâ'_iff, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, CliffordAlgebra.contractLeft_contractLeft, TensorProduct.algebraMap_gradedMul, Submodule.dualCoannihilator_top, hasEigenvector_toLin'_diagonal, lcomp_apply, separatingRight_iff_flip_ker_eq_bot, Matrix.nondegenerate_toBilin'_iff_nondegenerate_toBilin, Module.Dual.instIsReflecive, BilinForm.inf_orthogonal_self_le_ker_restrict, BilinForm.IsAlt.self_eq_zero, LieModule.Cohomology.dââ_apply_coe_apply_apply, Matrix.toLinearMapâââ'_toMatrix', continuous_of_isContPerfPair, toMatrix'_algebraMap, isNoetherian_linearMap, PiTensorProduct.liftEquiv_symm_apply, PiToModule.fromMatrix_apply_single_one, LocalizedModule.coe_map_eq, Representation.linHom_apply, QuadraticMap.associated_toQuadraticMap, dualMap_injective_of_surjective, SimpleGraph.top_le_span_range_lapMatrix_ker_basis_aux, dualMap_injective_iff, LinearEquiv.instIsPerfPair, Module.Basis.eval_range, BilinearForm.toMatrixAux_eq, CliffordAlgebra.contractLeft_Κ_mul, QuadraticMap.two_nsmul_associated, RootPairing.rootForm_reflection_reflection_apply, dualPairing_nondegenerate, RootPairing.posRootForm_posForm_pos_of_ne_zero, Matrix.SeparatingLeft.toBilin, Matrix.charpoly_toLin, FGModuleCat.FGModuleCatCoevaluation_apply_one, toMatrixOrthonormal_symm_apply, LinearEquiv.congrLeft_apply, IsLocalizedModule.map_linearCombination, BilinMap.baseChange_tmul, Module.Flat.eqLocus_lTensor_eq, Subspace.dualRestrict_leftInverse, StrongDual.dualPairing_apply, BilinForm.IsPosSemidef.add, LinearEquiv.piRing_symm_apply, CliffordAlgebra.even.lift_Κ, toMatrix_mulVec_repr, BilinForm.zero_left, toMatrix_innerââ_apply, QuadraticMap.associated_left_inverse', LieModule.Cohomology.mem_twoCochain_iff, TensorProduct.lift.tmul, Matrix.toLin_apply_eq_zero_iff, TensorProduct.lTensorHomToHomLTensor_apply, IsLocalizedModule.mapEquiv_apply, Matrix.nondegenerate_toBilin_iff, range_toContinuousLinearMap, BilinForm.isSymm_neg, Matrix.toLin'_reindex, BilinForm.toDual_def, CliffordAlgebra.contractRight_mul_algebraMap, Matrix.PosSemidef.toLinearMapâ'_zero_iff, BilinForm.toMatrix'_compLeft, Matrix.toLinearMapâââ_apply, BilinForm.dualBasis_repr_apply, PiTensorProduct.liftEquiv_apply, lsmul_injective, Module.IsReflexive.bijective_dual_eval', AlternatingMap.alternatizeUncurryFin_alternatizeUncurryFinLM_comp_apply, ExteriorAlgebra.liftAlternating_one, Subspace.flip_quotDualCoannihilatorToDual_bijective, isSelfAdjoint_iff', Subspace.dual_finrank_eq, Submodule.apply_mem_mapâ, Orientation.areaForm'_apply, Module.Basis.end_apply, Submodule.set_smul_eq_map, Matrix.Nondegenerate.toBilin, BilinForm.nondegenerate_toBilin'_iff_det_ne_zero, toMatrix'_apply, mem_span_iff_continuous_of_finite, Matrix.toLpLin_toLp, apply_eq_dotProduct_toMatrixâ_mulVec, coe_toContinuousLinearMap, IsLocalizedModule.map_injective, BilinForm.separatingRight_toMatrix_iff, RootPairing.prod_rootForm_smul_coroot_mem_range_domRestrict, flip_apply, BilinForm.SeparatingLeft.toMatrix', TensorProduct.mapBilinear_apply, LinearEquiv.conj_apply, finiteDimensional', Module.Basis.toDual_range, PiTensorProduct.dualDistribInvOfBasis_apply, Submodule.mapâ_eq_span_image2, Rep.ihom_obj_Ď_apply, Matrix.ker_toLin_eq_bot, TensorProduct.AlgebraTensorModule.dualDistrib_apply, ContinuousLinearMap.toLinearMap_innerSL_apply, Matrix.IntrinsicStar.isSelfAdjoint_toLin'_iff, Submodule.dualAnnihilator_sup_eq, LieModule.Cohomology.dââ_apply_apply_ofTrivial, GradedTensorProduct.auxEquiv_mul, Fintype.linearIndependent_iff'â, IsSymmetric.adjoint_eq, Module.FinitePresentation.linearEquivMap_apply, BilinMap.isSymm_iff_eq_flip, llcomp_apply', Submodule.dualCoannihilator_sup_eq, BilinForm.zero_apply, LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, QuotSMulTop.equivQuotTensor_naturality, smulRightâ_apply, IsNonneg.smul, IsLocalizedModule.mapEquiv_symm_apply, toMatrix'_symm, Module.symm_dualMap_evalEquiv, RootPairing.algebraMap_rootFormIn, InnerProductGeometry.norm_ofLp_crossProduct, TensorProduct.AlgebraTensorModule.uncurry_apply, polyCharpolyAux_map_eq_charpoly, toContinuousLinearMap_eq_iff_eq_toLinearMap, Submodule.baseChange_eq_span, linearMap_toMatrix_mul_basis_toMatrix, Submodule.dualCopairing_apply, Module.dualPairing_apply, polyCharpolyAux_eval_eq_toMatrix_charpoly_coeff, TensorProduct.AlgebraTensorModule.coe_lTensor, BilinForm.isNonneg_zero, RootPairing.toPerfPair_flip_comp_coroot, Coalgebra.rTensor_counit_comp_comul, toMatrix_transpose_apply, BilinForm.IsSymm.sub, toMatrix_dualTensorHom, LinearEquiv.arrowCongr_apply, BilinForm.nondegenerate_iff_ker_eq_bot, ContinuousLinearMap.coeLM_apply, exteriorPower.alternatingMapLinearEquiv_apply_ΚMulti, RootPairing.isCompl_rootSpan_ker_rootForm, CliffordAlgebra.changeForm_Κ_mul_Κ, TensorProduct.AlgebraTensorModule.homTensorHomMap_apply, RootPairing.reflectionPerm_root, isPositive_toContinuousLinearMap_iff, Matrix.range_toLin', prodMapLinear_apply, Submodule.mapâ_span_singleton_eq_map_flip, RootPairing.rootForm_self_eq_zero_iff, PiTensorProduct.piTensorHomMap_tprod_eq_map, dualMap_apply', mul_toMatrix', Matrix.liftLinear_apply, TensorProduct.LieModule.coe_liftLie_eq_lift_coe, PiTensorProduct.lift_comp_reindex, ext_iffâ, PiTensorProduct.dualDistribEquivOfBasis_apply_apply, dualMap_bijective_iff, TensorPower.multilinearMapToDual_apply_tprod, HVertexOperator.of_coeff_coeff, PiTensorProduct.mapâ_tprod_tprod, star_eq_adjoint, instLieModule, toMatrix_smulBasis_right, Matrix.toLpLin_symm_id, Module.Basis.toDual_eq_repr, Matrix.range_toLin_eq_top, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, Module.Basis.baseChange_end, Matrix.toLin_finTwoProd_apply, FDRep.char_linHom, HVertexOperator.coeff_inj_iff, BilinForm.dualBasis_eq_iff, Matrix.isPositive_toEuclideanLin_iff, addMonoidEndRingEquivInt_apply, ContinuousLinearMap.toLinearMap_eq_iff_eq_toContinuousLinearMap, Matrix.toBilin'Aux_single, LieModule.lie_traceForm_eq_zero, IsLocalizedModule.map_mk', exteriorPower.pairingDual_ΚMulti_ΚMulti, mul_toMatrixâ, PointwiseConvergenceCLM.coeLMââ_apply, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, QuadraticMap.discr_comp, Module.Basis.linearMap_repr_apply, exteriorPower.alternatingMapLinearEquiv_comp_ΚMulti, lsmul_eq_DistribMulAction_toLinearMap, Module.eval_apply_eq_zero_iff, IsModuleTopology.continuous_bilinear_of_finite_left, lsum_single, Submodule.quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, LieModule.trace_comp_toEnd_genWeightSpace_eq, nondegenerate_congr_iff, TensorProduct.gradedMul_one, CliffordAlgebra.contractLeft_comm, Orientation.areaForm_comp_linearIsometryEquiv, FractionalIdeal.mem_dual, toMatrix'_mul, IsBaseChange.end, adjoint_toSpanSingleton, lcomp_apply', mul_basis_toMatrix, Module.Basis.toDual_toDual, Module.dualProdDualEquivDual_apply_apply, RootPairing.zero_le_posForm, BilinForm.sub_apply, IsLocalizedModule.rTensor, LinearEquiv.conj_symm_conj, killingForm_apply_apply, trace_id, toMatrix_algebraMap, spectrum_toMatrix, PowerBasis.constr_pow_gen, BilinForm.congr_refl, SeparatingRight.toMatrixâ, Module.Finite.of_isComplemented_domain, Matrix.isUnit_toLin_iff, RootPairing.InvariantForm.apply_weylGroup_smul, Subspace.quotAnnihilatorEquiv_apply, Projectivization.mk_eq_mk_iff_crossProduct_eq_zero, Matrix.diagonal_toLin', re_inner_adjoint_mul_self_nonneg, PointwiseConvergenceCLM.coeLM_apply, Module.isTorsionBySet_iff_subseteq_ker_lsmul, TensorProduct.AlgebraTensorModule.curry_apply, isPositive_self_comp_adjoint, Algebra.TensorProduct.mul_one, Matrix.charpoly_toLin', BilinForm.toMatrix_symm, BilinMap.toQuadraticMap_smul, Matrix.toLinearMapâ'_toMatrix', rank_dual_eq_card_dual_of_aleph0_le_rank', Matrix.toLinearMapâââ'_apply, IsLocalizedModule.map_apply, Algebra.TensorProduct.mk_one_injective_of_isScalarTower, Matrix.toLin'_pow, LieModule.Cohomology.mem_twoCocycle_iff, Ideal.ker_tensorProductMk_quotient, rank_dual_eq_card_dual_of_aleph0_le_rank, BilinForm.SeparatingLeft.toMatrix, TensorProduct.AlgebraTensorModule.mapBilinear_apply, BilinMap.toQuadraticMapLinearMap_apply, Matrix.l2_opNNNorm_def, RootPairing.rootForm_apply_apply, LieModule.traceForm_eq_zero_of_isTrivial, Module.Basis.dualBasis_apply, apply_toPerfPair_flip, apply_eq_star_dotProduct_toMatrixâ_mulVec, toMatrix_mul, toMatrixâ_complââ, BilinForm.IsSymm.smul, Matrix.minpoly_toLin', RootPairing.iInf_ker_root'_eq, lift_rank_lt_rank_dual, eq_adjoint_iff, GradedTensorProduct.mulHom_apply, BilinForm.toMatrix_compRight, BilinForm.nondegenerate_toMatrix'_iff, Polynomial.wronskianBilin_apply, toMatrixâ_toLinearMapâ, detAux_def', toMatrix_transpose_apply', toMatrix'_intrinsicStar, BilinForm.congr_congr, finiteDimensional, isPosSemidef_zero, Orientation.nonneg_inner_and_areaForm_eq_zero_iff_sameRay, cross_apply, LinearEquiv.lieConj_apply, IsBaseChange.toDual_comp_apply, IsBaseChange.linearMapLeftRightHom_toMatrix, BilinForm.isAlt_zero, BilinForm.toMatrixAux_apply, PiTensorProduct.mapMultilinear_apply, Matrix.SpecialLinearGroup.toLin_equiv.symm_toLinearMap_eq, LinearEquiv.dualMap_symm, PiTensorProduct.dualDistrib_apply, DFinsupp.lsum_single, Matrix.toLinOfInv_symm_apply, toMatrix_smulRight, toMatrixâAux_eq, lsmul_apply, TensorProduct.AlgebraTensorModule.restrictScalars_rTensor, vecMulVecBilin_apply_apply, isAdjointPair_toLinearMapâ', Orientation.areaForm_comp_rightAngleRotation, Module.Dual.baseChange_apply_tmul, Matrix.toLin'_apply', QuotSMulTop.map_exact, isPairSelfAdjoint_equiv, toMatrixâ_symm, Module.End.commute_exp_left_of_commute, Configuration.ofField.crossProduct_eq_zero_of_dotProduct_eq_zero, congr_funâ, Matrix.ker_toLin'_eq_bot_iff, vecConsâ_apply, Finsupp.lsum_apply, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg, SeparatingLeft.toMatrixâ, toMatrix'_toLinearMapâ', TensorProduct.lift_comp_map, Derivation.llcomp_apply, BilinForm.toLin'Flip_apply, BilinForm.toMatrix_mul_basis_toMatrix, exteriorPower.pairingDual_apply_apply_eq_one, QuadraticForm.dualProdIsometry_toFun, BilinForm.mul_toMatrix', map_mul_iff, Finsupp.coe_lsum, Matrix.toLinearMapâ_symm, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, toMatrixRight'_id, leibniz_cross, Orientation.inner_rightAngleRotation_left, HVertexOperator.coeff_inj, minpoly_toMatrix, det_dualMap, PiToModule.fromEnd_apply_single_one, CharacterModule.homEquiv_symm_apply_apply_apply, BilinForm.IsRefl.neg, RootPairing.coroot_root_two, PiTensorProduct.piTensorHomMapFunâ_smul, adjoint_lTensor, LieModule.Cohomology.add_apply_apply, Matrix.nondegenerate_toLinearMapâ'_iff_nondegenerate_toLinearMapâ, multilinearCurryLeftEquiv_apply, CliffordAlgebra.evenToNeg_Κ, toMatrixOrthonormal_apply, BilinMap.toQuadraticMap_list_sum, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg_aux, lTensor_comp_mk, Module.Basis.toDual_injective, LieModule.traceForm_eq_zero_if_mem_lcs_of_mem_ucs, RootPairing.iInf_ker_coroot'_eq, Subspace.finrank_add_finrank_dualCoannihilator_eq, Module.dualProdDualEquivDual_apply, Orientation.kahler_apply_self, Module.Invertible.rTensorInv_leftInverse, RootPairing.Hom.weight_coweight_transpose_apply, BilinForm.IsSymm.add, QuadraticForm.toDualProd_apply, tendsto_iff_forall_eval_tendsto_topDualPairing, IsNonneg.nonneg, Orientation.inner_mul_areaForm_sub', AlternatingMap.curryLeftLinearMap_apply, PiTensorProduct.piTensorHomMapâ_tprod_tprod_tprod, Algebra.toMatrix_lmul', BilinForm.isAlt_neg, Submodule.mapâ_span_span, BilinForm.ext_iff, Finsupp.llift_symm_apply, IsLocalizedModule.map_id, Orientation.kahler_rotation_left', Representation.linHom.invariantsEquivRepHom_symm_apply_coe, AffineMap.toConstProdLinearMap_apply, Matrix.ker_diagonal_toLin', RootPairing.RootPositiveForm.two_mul_apply_root_root, polyCharpolyAux_baseChange, coe_rTensorHom, range_dualMap_eq_dualAnnihilator_ker_of_surjective, Coalgebra.lift_lsmul_comp_counit_comp_comul, FGModuleCat.Iso.conj_eq_conj, Orientation.abs_areaForm_le, LieModule.traceForm_eq_sum_finrank_nsmul, Matrix.toBilin'_apply, LieAlgebra.conj_ad_apply, flip_injective_iffâ, RootPairing.prod_rootFormIn_smul_coroot_mem_range_PolarizationIn, toMatrix_prodMap, Matrix.toLin_apply, Matrix.toLin'_one, RootPairing.reflection_dualMap_eq_coreflection, Orientation.normSq_kahler, AlgEquiv.linearEquivConj_mulLeftRight, Module.Basis.constr_apply_fintype, LinearEquiv.symm_conj_apply, TensorProduct.LieModule.lift_apply, MultilinearMap.ofSubsingletonâ_apply, DFinsupp.lsum_symm_apply, TensorProduct.isBaseChange, Module.isTorsionBy_iff_mem_ker_lsmul, Module.injOn_dualMap_subtype_span_range_range, Submodule.mapâ_le, PiTensorProduct.mul_def, RootPairing.rootForm_self_sum_of_squares, map_zeroâ, Matrix.toLin_conjTranspose, BilinForm.isRefl_neg, LinearEquiv.conj_conj_symm, LieAlgebra.IsKilling.span_weight_isNonZero_eq_top, QuadraticMap.canLift', TensorProduct.AlgebraTensorModule.lTensor_comp, homTensorHomEquiv_toLinearMap, Subspace.dualLift_of_mem, RootPairing.algebraMap_posRootForm_posForm, Submodule.dualAnnihilator_gc, AffineMap.toConstProdLinearMap_symm_apply, RootPairing.span_root'_eq_top, BilinForm.nondegenerate_congr_iff, exteriorPower.alternatingMapLinearEquiv_comp, Matrix.trace_toLin'_eq, Matrix.toLin'OfInv_symm_apply, Orientation.rotation_eq_matrix_toLin, BilinForm.flip_apply, RootPairing.orthogonal_corootSpan_eq, Module.eval_ker, isNilpotent_trace_of_isNilpotent, RootPairing.ker_rootForm_eq_dualAnnihilator, BilinForm.compRight_apply, Submodule.sup_dualAnnihilator_le_inf, Module.FinitePresentation.linearEquivMapExtendScalars_apply, IsBaseChange.endHom_apply, isSkewAdjoint_iff_neg_self_adjoint, polyCharpoly_eq_of_basis, Module.Invertible.rTensorInv_injective, TensorProduct.AlgebraTensorModule.lTensor_mul, Algebra.TensorProduct.one_mul, Ideal.constr_basisSpanSingleton, mem_polar_singleton, LinearEquiv.isUnit_det, IsSymm.eq, CliffordAlgebra.contractLeft_Κ, polyCharpolyAux_map_aeval, Subspace.dualAnnihilator_iInf_eq, Algebra.traceMatrix_of_basis, LieModule.traceForm_lieSubalgebra_mk_left, LieModule.Cohomology.smul_apply_apply, CliffordAlgebra.changeForm.neg_proof, Matrix.spectrum_toLin, Submodule.quotDualCoannihilatorToDual_injective, Module.Basis.eval_injective, PolyEquivTensor.toFunBilinear_apply_apply, BilinForm.IsSymm.neg, toMatrix'_comp, Matrix.toLinearEquiv'_apply, isUnit_toMatrix'_iff, BilinForm.add_right, Matrix.toBilin_toMatrix, IsBaseChange.toDual_apply, PolyEquivTensor.toFunLinear_tmul_apply, Finsupp.bilinearCombination_apply, Matrix.nondegenerate_toLinearMapâ_iff, BilinForm.comp_congr, Matrix.toBilin'_comp, Matrix.isHermitian_iff_isSymmetric, LieModule.Cohomology.instLinearMapClassSubtypeLinearMapIdMemSubmoduleTwoCochain, Subspace.dualRestrict_surjective, RootPairing.InvariantForm.apply_eq_or_aux, IsBaseChange.endHom_one, toMatrix_directSum_collectedBasis_eq_blockDiagonal', WeakBilin.coeFn_continuous, Submodule.mapâ_span_singleton_eq_map, lift_lsmul_mul_eq_lsmul_lift_lsmul, Orientation.kahler_rightAngleRotation_left, separatingLeft_congr_iff, Module.Basis.end_repr_symm_apply, Module.evalEquiv_apply, Orientation.kahler_comp_linearIsometryEquiv, IsReflective.dvd_two_mul, CliffordAlgebra.contractRight_contractRight, InnerProductSpace.toMatrix_rankOne, LieAlgebra.InvariantForm.mem_orthogonal, BilinMap.toQuadraticMap_multiset_sum, IsPerfPair.bijective_right, mul_toMatrixâ_mul, Orientation.abs_areaForm_of_orthogonal, exteriorPower.alternatingMapToDual_apply_ΚMulti, BilinForm.tensorDistribEquiv_tmul, innerâ_apply_apply, trace_tensorProduct', polar_eq_biInter_preimage, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, eq_adjoint_iff_basis, IsLocalizedModule.map_bijective_iff_localizedModuleMap_bijective, PiTensorProduct.one_mul, QuotSMulTop.equivQuotTensor_naturality_mk, Module.dual_rank_eq, toMatrix'_id, polyCharpolyAux_coeff_eval, Orientation.kahler_rotation_left, Matrix.toLinearMapâââ_symm, contractLeft_apply, SemimoduleCat.Iso.conj_eq_conj, BilinMap.tensorDistrib_tmul, Projectivization.cross_mk, BilinForm.mul_toMatrix_mul, trace_transpose, IsBaseChange.map_id_lsmul_eq_lsmul_algebraMap, IsBaseChange.endHom_comp_apply, BilinForm.toMatrix_mul_basis_toMatrix, nondegenerate_toMatrixâ'_iff, Orientation.inner_sq_add_areaForm_sq, BilinForm.toMatrix'_comp, ker_dualMap_eq_dualCoannihilator_range, CharacterModule.dual_rTensor_conj_homEquiv, mulLinearMap_apply_apply, CliffordAlgebra.changeForm_contractLeft, IsLocalization.map_eq_toLinearMap_mapâ, triple_product_eq_det, LinearEquiv.dualMap_apply, QuadraticMap.coe_associatedHom, LieAlgebra.Extension.dââ_oneCochainOfTwoSplitting, mem_selfAdjointSubmodule, IsNonneg.add, finrank_range_dualMap_eq_finrank_range, LocalizedModule.map_exact, BilinForm.IsAlt.neg, bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv, Module.bijective_dual_eval, Matrix.toLinearMapRight'_apply, BilinForm.toMatrix_mul, Module.FaithfullyFlat.tensorProduct_mk_injective, Matrix.ofLp_toEuclideanLin_apply, Matrix.toLinearMapâ_apply, CliffordAlgebra.forall_mul_self_eq_iff, RootPairing.coroot_root_eq_pairing, complââ_apply, rTensorHomEquivHomRTensor_toLinearMap, mem_span_of_iInf_ker_le_ker, LieAlgebra.LoopAlgebra.residuePairing_apply_apply, MultilinearMap.uncurryRight_apply, nondegenerate_toLinearMapâ'_iff_det_ne_zero, PiTensorProduct.piTensorHomMapFunâ_add, Matrix.mulVecBilin_apply, Module.Basis.dualBasis_repr, PiTensorProduct.mul_one, CategoryTheory.Abelian.Ext.bilinearCompOfLinear_apply_apply, lieEquivMatrix'_symm_apply, Matrix.proj_diagonal, Module.Dual.baseChange_baseChange, separatingDual_iff_injective, TensorProduct.dualDistribInvOfBasis_apply, trace_eq_sum_trace_restrict, map_smulâ, disjoint_ker_of_nondegenerate_restrict, dualTensorHom_prodMap_zero, IsContPerfPair.bijective_right, isUnit_toMatrix_iff, Subspace.dualEquivDual_def, LocalizedModule.map_id, TensorProduct.AlgebraTensorModule.rTensor_mul, MultilinearMap.curryMidLinearEquiv_apply, BilinForm.toMatrix_compLeft, trace_eq_matrix_trace, RootPairing.polarizationEquiv_symm_apply_coroot, BilinForm.toMatrix_apply, Matrix.linfty_opNorm_toMatrix, Matrix.toBilin'_apply', Module.Basis.linearCombination_coord, BilinForm.IsSymm.polarization, Matrix.toLinearMapâ'_single, ExteriorAlgebra.liftAlternating_comp_ΚMulti, separatingRight_toLinearMapâ'_of_det_ne_zero', Algebra.TensorProduct.mul_assoc, adjoint_inner_left, TensorProduct.dualDistrib_dualDistribInvOfBasis_left_inverse, Module.Basis.toDual_apply, BilinForm.mul_toMatrix, Subspace.dualLift_rightInverse, coprodEquiv_apply, QuadraticMap.associated_linMulLin, Rep.ihom_map_hom, dualTensorHomEquivOfBasis_toLinearMap, QuadraticForm.associated_isSymm, IsBaseChange.dual, Module.apply_evalEquiv_symm_apply, Submodule.coe_dualAnnihilator_span, Orientation.kahler_mul, trace_conj', Matrix.SpecialLinearGroup.toLin'_to_linearMap, mul_toMatrixâ'_mul, toMatrixâ'_mul, IsTensorProduct.lift_eq, BilinForm.flip_flip, Algebra.toMatrix_lsmul, toMatrix_innerSL_apply, Ideal.subtype_isoBaseOfIsPrincipal_eq_mul, Matrix.separatingLeft_toLinearMapâ'_iff, QuadraticMap.exists_companion', triple_product_permutation, separatingLeft_toLinearMapâ'_of_det_ne_zero', PiTensorProduct.dualDistrib_dualDistribInvOfBasis_right_inverse, Module.End.baseChangeHom_apply_apply, PiTensorProduct.mul_tprod_tprod, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, BilinForm.toMatrix_mul, Subspace.dualCopairing_nondegenerate, Module.finite_dual_iff, toMatrix_comp, Module.dual_projective, Module.Basis.coe_toDual_self, RootPairing.RootPositiveForm.exists_pos_eq, Matrix.separatingLeft_toBilin'_iff, Submodule.dualAnnihilator_top, Matrix.trace_toLin_eq, toMatrixâ_mul_basis_toMatrix, TensorProduct.AlgebraTensorModule.lift_apply, LieAlgebra.IsKilling.rootSystem_pairing_apply, Module.Basis.toMatrix_eq_toMatrix_constr, lcompââ_apply, polyCharpoly_map_eq_charpoly, Ideal.pi_mkQ_rTensor, BilinMap.toQuadraticMap_sum, Orientation.kahler_map, CliffordAlgebra.contractRight_one, PolyEquivTensor.toFunBilinear_apply_eq_smul, isOrthoᾢ_def, BilinForm.isSymm_def, PiTensorProduct.lift_tprod, Matrix.toLinOfInv_apply, TensorProduct.lcurry_apply, TensorProduct.curry_apply, dualTensorHomEquivOfBasis_symm_cancel_left, IsPerfPair.id, Module.Invertible.rTensorEquiv_symm_apply_apply, Module.Flat.iff_lift_lsmul_comp_subtype_injective, PiTensorProduct.liftIsometry_apply_apply, ContinuousLinearMap.coeLMââ_apply, CliffordAlgebra.foldr'Aux_apply_apply, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, LinearEquiv.conj_id, Matrix.toBilin'Aux_eq, TensorProduct.lift.equiv_symm_apply, addMonoidHomLequivNat_apply, LieAlgebra.IsKilling.cartanEquivDual_apply_apply, IntrinsicStar.isSelfAdjoint_iff_toMatrix', Matrix.toLin_finTwoProd_toContinuousLinearMap, IsBaseChange.linearMapLeftRight, IsLocalization.mapExtendScalars_eq_toLinearMap_mapâ, map_addâ, Submodule.mem_traceDual, domRestrictâ_apply, RootPairing.flip_toFun_apply, Orientation.areaForm_map, Matrix.toPerfectPairing, PiTensorProduct.norm_eval_le_projectiveSeminorm, IsProj.trace, map_negâ, LinearEquiv.congrRightâ_trans, Subspace.map_le_dualAnnihilator_dualAnnihilator, BilinForm.isSymm_zero, TensorProduct.AlgebraTensorModule.rTensor_id, Matrix.kroneckerTMulBilinear_apply, BilinForm.orthogonal_top_eq_ker, InnerProductSpace.toLinearMap_rankOne, RootPairing.rootSpan_dualAnnihilator_map_eq_iInf_ker_root', Submodule.image2_subset_mapâ, Algebra.norm_eq_zero_iff', Module.Basis.linearMap_apply_apply, addMonoidHomLequivInt_symm_apply, trace_tensorProduct, comp_dualTensorHom, QuadraticForm.dualProdProdIsometry_toFun, Matrix.toLinearEquivRight'OfInv_apply, hasEigenvalue_toLin'_diagonal_iff, IsLocalizedModule.map_injective_iff_localizedModuleMap_injective, LinearEquiv.smul_id_of_finrank_eq_one_apply, BilinForm.coe_injective, toMatrix'_toLinearMapâââ', BilinForm.smul_right, isStarProjection_toContinuousLinearMap_iff, Rep.MonoidalClosed.linearHomEquiv_hom, Matrix.toLpLin_mul, Matrix.toLin'_submatrix, TensorProduct.gradedMul_algebraMap, Matrix.separatingLeft_toLinearMapâ_iff, ModuleCat.localizedModuleMap_hom_apply, Orientation.inner_rightAngleRotationAuxâ_right, ringLmapEquivSelf_apply, Matrix.toLin_toMatrix, LieModule.traceForm_genWeightSpace_eq, PiTensorProduct.lift_comp_map, TensorProduct.homTensorHomMap_apply, tensorEqLocus_tmul, LieModule.traceForm_apply_apply, cross_dot_cross, toMatrixâ_apply, ModuleCat.Hom.homâ_apply, RootPairing.rootFormIn_self_smul_coroot, IsSymmetric.trace_eq_sum_eigenvalues, adjoint_comp, RootPairing.corootForm_self_smul_root, PiToModule.fromMatrix_apply, RootPairing.exists_form_eq_form_and_form_ne_zero, toContPerfPair_apply, LieModule.trace_toEnd_genWeightSpaceChain_eq_zero, Matrix.toEuclideanLin_apply_piLp_toLp, dualMap_apply, LieModule.Cohomology.twoCochain_val_apply, dualMap_surjective_iff, multilinearCurryLeftEquiv_symm_apply, MultilinearMap.piLinearMap_apply_apply_apply, TensorProduct.toLinearMap_symm_lid, QuadraticMap.associated_sq, dualMap_def, iSupIndep_iff_dfinsupp_lsum_injective, RootPairing.toPerfPair_conj_reflection, QuadraticMap.associated_comp, TensorProduct.tmul_of_gradedMul_of_tmul, IsLocalizedModule.map_exact, QuadraticMap.associated_isOrtho, CliffordAlgebra.contractLeft_mul_algebraMap, map_dualTensorHom, Submodule.range_dualMap_mkQ_eq, Subspace.dualLift_injective, MultilinearMap.curryMidLinearEquiv_symm_apply, Polynomial.toMatrix_sylvesterMap, smulRightâ_apply_apply, Finsupp.lsum_comp_lsingle, IsRefl.eq_iff, TensorProduct.AlgebraTensorModule.lTensor_one, Module.finrank_linearMap_self, Matrix.separatingRight_toBilin'_iff, vecEmptyâ_apply, Orientation.areaForm_map_complex, RootPairing.InvariantForm.apply_root_root_zero_iff, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, Matrix.toLin_finTwoProd, BilinForm.apply_toDual_symm_apply, Matrix.SpecialLinearGroup.toLin_equiv.toLinearMap_eq, CliffordAlgebra.even.lift.aux_apply, Module.Basis.linearMap_repr_symm_apply, CliffordAlgebra.even.lift.aux_Κ, BilinForm.neg_apply, RootPairing.rootForm_pos_of_ne_zero, Module.Basis.constr_basis, LinearEquiv.charpoly_conj, tensorProduct_apply, BilinForm.isPosSemidef_zero, exteriorPower.pairingDual_apply_apply_eq_one_zero, ModuleCat.homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, Orientation.inner_rightAngleRotation_right, WeakBilin.eval_continuous, QuotSMulTop.map_comp, LieModule.traceForm_apply_lie_apply, Projectivization.cross_mk_of_ne, not_separatingLeft_zero, CharacterModule.uncurry_apply, Rep.homEquiv_symm_apply_hom, QuadraticMap.Ring.associated_pi, nondegenerate_toMatrixâ_iff, Matrix.trace_kroneckerMapBilinear, AlgEquiv.linearEquivConj_mulRight, ModuleCat.Iso.conj_eq_conj, innerââ_apply, Matrix.toLin_one, CliffordAlgebra.contractLeft_algebraMap_mul, BilinForm.compLeft_apply, contractRight_apply, trace_eq_contract_of_basis, range_dualMap_le_dualAnnihilator_ker, Matrix.toLin_transpose, Complex.toMatrix_conjAe, Submodule.finite_dualAnnihilator_iff, Representation.leftRegular_norm_apply, BilinForm.mul_toMatrix, RootPairing.RootPositiveForm.algebraMap_apply_eq_form_iff, TensorProduct.mk_surjective, Matrix.toLpLin_symm_comp, Module.Basis.toDual_linearCombination_right, Matrix.toLinearMapâââ_apply_basis, VertexOperator.ncoeff_of_coeff, RootPairing.restrictScalars_toLinearMap_apply_apply, ExteriorAlgebra.liftAlternating_algebraMap, Orientation.kahler_apply_apply, Orientation.inner_rightAngleRotationAuxâ_left, toMatrix_toSpanSingleton, RootPairing.toPerfPair_flip_conj_coreflection, VertexOperator.ncoeff_eq_zero_of_lt_order, toMatrixâ_symm', Module.Invertible.bijective, Orientation.areaForm_apply_self, Nondegenerate.toMatrixâ', TensorProduct.equivFinsuppOfBasisRight_symm, HVertexOperator.compHahnSeries_coeff, Subspace.dualAnnihilator_le_dualAnnihilator_iff, RootPairing.InvariantForm.apply_eq_or, Matrix.Nondegenerate.toBilin', FDRep.Iso.conj_Ď, IsAlt.eq_of_add_add_eq_zero, VectorFourier.fourierIntegral_comp_add_right, BilinForm.congr_trans, toMatrix_singleton, isNonneg_def, BilinForm.toMatrix'_mul, dotProductBilin_apply_apply, trace_restrict_eq_of_forall_mem, exteriorPower.alternatingMapLinearEquiv_symm_apply, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, toMatrixâ'_complâ, restrictScalarsââ_injective, map_sumâ, VectorFourier.fourierIntegral_probChar, IsSymm.add, Submodule.le_dualAnnihilator_iff_le_dualCoannihilator, LieAlgebra.IsKilling.traceForm_coroot, TensorProduct.AlgebraTensorModule.curry_injective, Orientation.kahler_rotation_right, Submodule.span_eq_top_of_ne_zero, BilinForm.comp_apply, FDRep.char_dual, Module.Basis.traceDual_repr_apply, PiTensorProduct.lift.unique', Matrix.nondegenerate_toLinearMapâ'_iff, separatingRight_toMatrixâ_iff, FGModuleCat.FGModuleCatEvaluation_apply', LieModule.traceForm_eq_sum_finrank_nsmul_mul, Coalgebra.lTensor_counit_comp_comul, CliffordAlgebra.changeForm.associated_neg_proof, BilinForm.neg_right, RootPairing.RootPositiveForm.zero_lt_apply_root_root_iff, CliffordAlgebra.ofEven_Κ, BilinForm.IsNonneg.smul, QuotSMulTop.map_apply_mk, Submodule.dualAnnihilator_bot, Representation.linHom.mem_invariants_iff_comm, BilinForm.linMulLin_apply, RootPairing.corootSpan_dualAnnihilator_le_ker_rootForm, mkâ'_apply, IsLocalizedModule.map_comp, Module.Dual.eval_naturality, BilinForm.comp_symmCompOfNondegenerate_apply, HVertexOperator.coeff_comp, ModuleCat.ofHomâ_hom_apply_hom, LieAlgebra.IsKilling.traceForm_eq_zero_of_mem_ker_of_mem_span_coroot, Module.Finite.instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule_1, trace_conj, isSMulRegular_on_quot_iff_lsmul_comap_eq, IsLocalization.map_linearMap_eq_toLinearMap_mapâ, BilinForm.congr_fun, jacobi_cross, separatingLeft_toMatrixâ_iff, Module.map_eval_injective, HVertexOperator.coeff_apply_apply, basis_toMatrix_mul_linearMap_toMatrix_mul_basis_toMatrix, Module.Basis.toDualFlip_apply, RootPairing.EmbeddedG2.twoShortAddLongRoot_shortRoot, mem_span_iff_bound, TensorProduct.dualDistrib_apply, BilinForm.toLin_restrict_ker_eq_inf_orthogonal, BilinForm.IsAlt.sub, BilinForm.toMatrix'_toBilin', neg_cross, LocalizedModule.map_mk, PowerBasis.liftEquiv'_symm_apply_apply, PiTensorProduct.lift_comp_reindex_symm, QuadraticMap.separatingLeft_of_anisotropic, PowerBasis.constr_pow_mul, RootPairing.four_smul_rootForm_sq_eq_coxeterWeight_smul, det_toMatrix', Matrix.separatingLeft_toBilin_iff, eq_adjoint_iff_basis_right, LinearEquiv.arrowCongr_trans, LieAlgebra.IsKilling.ker_restrict_eq_bot_of_isCartanSubalgebra, Nondegenerate.toMatrixâ, Matrix.toLin'OfInv_apply, IsModuleTopology.continuous_bilinear_of_finite_right, Rep.ihom_obj_V_isModule, TensorProduct.tensorQuotEquivQuotSMul_comp_mk, BilinForm.isOrtho_def, innerââ_apply_coe, BilinMap.toQuadraticMap_apply, RootPairing.rootSpan_dualAnnihilator_map_eq, BilinForm.Nondegenerate.toMatrix', isSymm_iff_basis, Module.Basis.constr_self, toMatrix_basis_equiv, restrictScalarsââ_apply_apply, Module.evalEquiv_toLinearMap, MultilinearMap.compLinearMapMultilinear_apply, LieModule.traceForm_apply_eq_zero_of_mem_lcs_of_mem_center, topDualPairing_apply, trace_prodMap', toSeminormFamily_apply, TensorProduct.AlgebraTensorModule.lift_tmul, dualMap_comp_dualMap, separatingLeft_iff_ker_eq_bot, Matrix.SeparatingRight.toBilin', lflip_symm, ltoFun_apply, Orientation.areaForm_rightAngleRotation_right, BilinForm.apply_eq_dotProduct_toMatrix_mulVec, compBilinForm_apply_apply, lid_comp_rTensor, coe_toContinuousLinearMap_symm, Matrix.range_diagonal, BilinForm.Nondegenerate.ker_eq_bot, IsSymmetric.re_trace_eq_sum_eigenvalues, LieModule.Cohomology.mem_twoCocycle_iff_of_trivial, extendScalarsOfIsLocalizationEquiv_symm_apply, RootPairing.Base.cartanMatrixIn_mul_diagonal_eq, Module.Basis.constr_def, isSMulRegular_on_submodule_iff_disjoint_ker_lsmul_submodule, cardinalMk_algHom, trace_comp_comm, addMonoidEndRingEquivInt_symm_apply, trace_eq_sum_trace_restrict', BilinForm.toMatrix_compLeft, IsPositive.adjoint_eq, Matrix.maxGenEigenspace_toLin_diagonal_eq_eigenspace, Algebra.coe_lmul_eq_mul, Module.Basis.toDual_apply_left, nilRank_le_natTrailingDegree_charpoly, toPerfPair_apply, toMatrixâ'_comp, Matrix.toLinearMapâ_apply_basis, LinearPMap.mem_adjoint_domain_iff, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, TensorProduct.Algebra.moduleAux_apply, toMatrix_pow, RootPairing.disjoint_rootSpan_ker_rootForm, Module.FinitePresentation.isLocalizedModule_mapExtendScalars, BilinMap.polarBilin_toQuadraticMap, IsBaseChange.linearMapLeftRightHom_apply, Algebra.trace_apply, coprodEquiv_symm_apply, BilinForm.toMatrix_comp, LinearEquiv.map_mem_invtSubmodule_iff, Matrix.SpecialLinearGroup.toLin'_symm_apply, coe_innerââ_apply, trace_comp_cycle, Algebra.FormallyUnramified.comp_sec, Module.Basis.toDual_apply_right, trace_comp_cycle', Submodule.dualAnnihilator_map_linearEquiv_flip_symm, toMatrix'_one, Representation.dual_apply, Submodule.baseChange_span, BilinForm.toLin_restrict_range_dualCoannihilator_eq_orthogonal, Module.surjective_piEquiv_apply_iff, Submodule.dualAnnihilator_iSup_eq, Module.Dual.eq_of_preReflection_mapsTo', Submodule.dualAnnihilator_eq_bot_iff, TensorProduct.quotTensorEquivQuotSMul_comp_mk, Orientation.kahler_rightAngleRotation_right, PointedCone.mem_maxTensorProduct, Matrix.iSup_eigenspace_toLin_diagonal_eq_top, LinearEquiv.dualMap_refl, QuadraticMap.exists_companion, BilinForm.IsAlt.add, cross_cross_eq_smul_sub_smul', rank_lt_rank_dual, TensorProduct.rTensorHomToHomRTensor_apply, Module.Dual.congr_apply_apply, LieAlgebra.IsKilling.span_weight_eq_top, tensorKerEquiv_apply, basis_toMatrix_mul_linearMap_toMatrix, IsAlt.self_eq_zero, toMatrixâââ'_apply, Representation.dualTensorHom_comm, exact_lcomp_of_exact_of_surjective, transvection.baseChange, polar_mem_iff, Submodule.mem_biSup_iff_exists_dfinsupp, IsContPerfPair.continuous_uncurry, Matrix.toLinearMapRight'_one, isSMulRegular_iff_ker_lsmul_eq_bot, Matrix.maxGenEigenspace_toLin'_diagonal_eq_eigenspace, LieAlgebra.LoopAlgebra.twoCocycleOfBilinear_coe, IsLocalizedModule.map_surjective, QuadraticForm.associated_tmul, ModN.instModuleFinite, RootPairing.toLinearMap_apply_apply_mem_range_algebraMap, Orientation.norm_kahler, Submodule.dualRestrict_apply, TensorProduct.one_gradedMul, IsLocalizedModule.map_iso_commute, SymmetricAlgebra.IsSymmetricAlgebra.mvPolynomial, LieModule.traceForm_apply_lie_apply', Module.Basis.SmithNormalForm.toMatrix_restrict_eq_toMatrix, flip_surjective_iffâ, RootPairing.RootPositiveForm.algebraMap_posForm, lsum_piSingle, IsBaseChange.linearMapRight, Submodule.dualAnnihilator_eq_bot_iff', Module.Basis.constr_range, ker_lsmul, PiTensorProduct.mul_comm, Matrix.toLpLin_apply, Matrix.toLin'_apply, CliffordAlgebra.contractRight_Κ, QuotSMulTop.map_id, LinearEquiv.arrowCongr_comp, isSMulRegular_on_quot_iff_lsmul_comap_le, Submodule.map_dualCoannihilator_linearEquiv_flip, Module.Basis.constr_apply, DFinsupp.lsum_apply_apply, BilinForm.SeparatingRight.toMatrix', TensorProduct.toLinearMap_symm_rid, Module.Dual.instLieModule, toMatrix_adjoint, Submodule.dualQuotEquivDualAnnihilator_symm_apply_mk, TensorProduct.AlgebraTensorModule.coe_rTensor, diag_toMatrix_directSum_collectedBasis_eq_zero_of_mapsTo_ne, Subspace.map_dualCoannihilator, LieAlgebra.Extension.twoCocycleOf_coe_coe, separatingLeft_toLinearMapâ'_iff_det_ne_zero, CharacterModule.homEquiv_apply_apply, map_smulâââ, Rep.ihom_obj_Ď, BilinForm.Nondegenerate.toMatrix, RootPairing.isCompl_corootSpan_ker_corootForm, dualCoannihilator_range_eq_ker_flip, im_inner_adjoint_mul_self_eq_zero, QuadraticMap.associated_flip, BilinForm.congr_symm, comprâââ_apply, Matrix.l2_opNorm_def, signedDist_apply_linear, Matrix.toEuclideanLin_toLp, BilinForm.baseChange_tmul, toLinearMap_toPerfPair, LieAlgebra.IsKilling.ker_killingForm_eq_bot, RootPairing.corootSpan_dualAnnihilator_map_eq_iInf_ker_coroot', BilinForm.isSymm_iff_basis, PowerBasis.constr_pow_aeval, RootPairing.invtSubmodule_reflection_of_invtSubmodule_coreflection, CliffordAlgebra.EvenHom.contract_mid, det_toMatrix, Algebra.traceForm_toMatrix_powerBasis, Matrix.minpoly_toLin, basis_toMatrix_mul, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, SemimoduleCat.homLinearEquiv_symm_apply, Matrix.toLin'_toMatrix', AlternatingMap.alternatizeUncurryFinLM_apply, det_toLin, posSemidef_toMatrix_iff, Representation.linHom.invariantsEquivRepHom_apply_hom, instIsLocalizedModuleLinearMapIdLocalizationLocalizedModuleMapOfFinitePresentation, trace_mul_cycle', BilinForm.nondegenerate_toBilin'_of_det_ne_zero', BilinForm.sum_apply, RootPairing.InvariantForm.apply_eq_or_of_apply_ne, QuadraticMap.associated_isSymm, FGModuleCat.Iso.conj_hom_eq_conj, RootPairing.InvariantForm.two_mul_apply_root_root, Module.Basis.toDual_eq_equivFun, SeparatingLeft.toMatrixâ', isNonneg_zero, TensorProduct.toMatrix_comm, BilinMap.toQuadraticMap_neg, dualTensorHomEquivOfBasis_apply, polar_mem, toMatrixâ'_apply, isAdjointPair_inner, ModuleCat.monoidalClosed_pre_app, IsPositive.adjoint_conj, LieModule.Cohomology.dââ_comp_dââ, Subspace.quotDualCoannihilatorToDual_bijective, ker_tensorProductMk, orthogonal_span_singleton_eq_to_lin_ker, ker_dualMap_eq_dualAnnihilator_range, PiTensorProduct.dualDistrib_dualDistribInvOfBasis_left_inverse, Matrix.separatingLeft_toLinearMapâ'_iff_separatingLeft_toLinearMapâ, LinearEquiv.trans_dualMap_symm_flip, BilinForm.separatingLeft_toMatrix_iff, trace_comp_comm', TensorProduct.sum_tmul_basis_left_injective, PiTensorProduct.lift.unique, QuadraticForm.associated_baseChange, Real.volume_preserving_transvectionStruct, Matrix.toBilin'_toMatrix', trace_baseChange, CliffordAlgebra.contractLeftAux_apply_apply, Matrix.toLinearMapâââ_toMatrixâ, BilinForm.IsAlt.smul, CliffordAlgebra.contractLeft_one, le_comap_range_rTensor, toMatrix'_mulVec, RootPairing.EmbeddedG2.threeShortAddLongRoot_longRoot, trace_eq_sum_trace_restrict_of_eq_biSup, RootPairing.ker_corootForm_eq_dualAnnihilator, Subspace.dualAnnihilator_inf_eq, VertexOperator.coeff_eq_ncoeff, lsum_symm_apply, IsBaseChange.toDualBaseChange_tmul, IsLocalizedModule.map_LocalizedModules, Matrix.SeparatingLeft.toLinearMapâ, hasEigenvector_toLin_diagonal, separatingRight_toLinearMapâ'_iff_det_ne_zero, Module.rank_linearMap_self, TensorProduct.quotTensorEquivQuotSMul_symm_comp_mkQ, domRestrictââ_apply, dotProduct_toMatrixâ_mulVec, LieModule.range_traceForm_le_span_weight, TensorProduct.gradedComm_gradedMul, Matrix.diagonal_comp_single, FDRep.dualTensorIsoLinHom_hom_hom, IsPerfectCompl.isCompl_left, Submodule.map_dualAnnihilator_linearEquiv_flip_symm, SpecialLinearGroup.coe_dualMap, IsBaseChange.endHom_comp, traceAux_def, mem_span_iff_continuous, Algebra.leftMulMatrix_apply, InnerProductSpace.symm_toEuclideanLin_rankOne, Subspace.isCompl_dualAnnihilator, BilinForm.toMatrix'_compRight, VertexOperator.coeff_eq_zero_of_lt_order, Module.Basis.eval_ker, ExteriorAlgebra.liftAlternating_Κ, TensorProduct.AlgebraTensorModule.lcurry_apply, Matrix.SeparatingRight.toBilin, LieModule.coe_maxTrivLinearMapEquivLieModuleHom, CliffordAlgebra.contractLeftAux_contractLeftAux, Subspace.comap_dualAnnihilator_dualAnnihilator, toMatrix_apply, RootPairing.ker_polarization_eq_ker_rootForm, Module.erange_coe, TensorProduct.toMatrix_map, Matrix.rank_vecMulVec, continuous_uncurry_of_isContPerfPair, Submodule.mem_traceDual_iff_isIntegral, LieAlgebra.IsKilling.rootSystem_root_apply, RootPairing.polarization_apply_eq_zero_iff, Submodule.le_dualCoannihilator_dualAnnihilator, RootPairing.EmbeddedG2.threeShortAddTwoLongRoot_longRoot, Orientation.areaForm_rightAngleRotation_left, BilinForm.restrict_apply, toMatrix_id_eq_basis_toMatrix, contractLeft_assoc_coevaluation', TensorProduct.dualDistribEquivOfBasis_apply_apply, baseChangeHom_apply, toMatrixRight'_comp, isOrtho_def, Module.dualProdDualEquivDual_symm_apply, trace_map, Module.Basis.constr_eq, Module.FinitePresentation.isLocalizedModule_map, HVertexOperator.coeff_of_coeff, lTensor_eqLocus_subtype_tensoreqLocusEquiv_symm, applyâ_apply_apply, dualProd.toQuadraticForm, IsAlt.neg, Subspace.finrank_add_finrank_dualAnnihilator_eq, Matrix.toBilin_comp, CliffordAlgebra.changeForm_changeForm, polyCharpoly_coeff_eval, SimpleGraph.lapMatrix_toLinearMapâ'_apply'_eq_zero_iff_forall_adj, LieModuleHom.map_lieâ, BilinForm.apply_smul_sub_smul_sub_eq, SimpleGraph.mem_ker_toLin'_lapMatrix_of_connectedComponent, lsum_comp_mapRange_toSpanSingleton, Orientation.inner_mul_inner_add_areaForm_mul_areaForm', RootPairing.orthogonal_rootSpan_eq, MultilinearMap.ofSubsingletonâ_symm_apply, det_toMatrix_eq_det_toMatrix, Algebra.TensorProduct.mul_apply, Matrix.SpecialLinearGroup.toLin'_apply, Module.Finite.of_isComplemented_codomain, Submodule.piQuotientLift_mk, QuadraticMap.polarBilin_apply_apply, toKerIsLocalized_apply_coe, ModuleCat.ihom_ev_app, adjoint_id, BilinForm.add_apply, Submodule.flip_quotDualCoannihilatorToDual_injective, lflip_apply, Module.Finite.instLinearMapIdSubtypeMemSubmoduleOfIsSemisimpleModule, TensorProduct.lift.equiv_apply, IsBaseChange.linearMapLeftRightHom_comp, Rep.indResHomEquiv_symm_apply_hom, Subspace.dualPairing_eq, QuadraticForm.dualProdProdIsometry_invFun, SeparatingLeft.congr, Matrix.Nondegenerate.toLinearMapâ', AlgHom.mulLeftRightMatrix.comp_inv, Orientation.inner_mul_areaForm_sub, IsLocalizedModule.map_lTensor, Matrix.separatingRight_toLinearMapâ'_iff_separatingRight_toLinearMapâ, Module.Basis.coord_toDualEquiv_symm_apply, Finsupp.lsum_symm_apply, Module.Basis.baseChange_linearMap, BilinForm.sub_right, BilinMap.toQuadraticMap_sub, IsRefl.ker_flip, toMatrixâAux_apply, Module.mapEvalEquiv_symm_apply, Subspace.dualEquivDual_apply, BilinForm.iIsOrtho_def, TensorProduct.uncurry_apply, BilinForm.apply_dualBasis_right, TensorProduct.tensorQuotEquivQuotSMul_symm_comp_mkQ, Module.Dual.congr_symm_apply_apply, PointedCone.dual_singleton, TensorPower.pairingDual_tprod_tprod, sum_repr_mul_repr_mul, IsPositive.conj_adjoint, IsPerfPair.dualEval, ker_toContinuousLinearMap, TensorProduct.AlgebraTensorModule.lTensor_tmul, charpoly_toMatrix, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple, toLinearMapâ'Aux_toMatrixâAux, isSymm_iff_isHermitian_toMatrix, trace_lie, lsmul_eq_distribSMultoLinearMap, Matrix.toBilin'_single, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, Module.FinitePresentation.linearEquivMapExtendScalars_symm_apply, separatingLeft_dualProd, toMatrix_toLin, range_localizedMap_eq_localizedâ_range, Module.Basis.traceDual_eq_iff, IsTensorProduct.map_eq, DirectSum.gMulLHom_apply_apply, polyCharpolyAux_map_eq_toMatrix_charpoly, Matrix.toLinearEquiv_apply, LinearEquiv.piRing_apply, hasEigenvalue_toLin_diagonal_iff, PiTensorProduct.lift_symm, CliffordAlgebra.contractLeft_algebraMap, Matrix.spectrum_toLin', dualAnnihilator_ker_eq_range_flip, LieAlgebra.killingForm_of_equiv_apply
|