Étale morphisms #
A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y
and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is étale.
Main results #
AlgebraicGeometry.Etale.iff_smoothOfRelativeDimension_zero: Etale is equivalent to smooth of relative dimension0.
A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and
V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is étale.
- etale_appLE {U : Y.Opens} : IsAffineOpen U → ∀ {V : X.Opens}, IsAffineOpen V → ∀ (e : V ≤ (TopologicalSpace.Opens.map f.base).obj U), (CommRingCat.Hom.hom (Scheme.Hom.appLE f U V e)).Etale
Instances
Alias of AlgebraicGeometry.Etale.etale_appLE.
Alias of AlgebraicGeometry.Etale.
A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and
V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is étale.
Equations
Instances For
The property of scheme morphisms Etale is associated with the ring
homomorphism property Etale.
Being étale is multiplicative.
Etale is stable under base change.
Open immersions are étale.
If f ≫ g is étale and g unramified, then f is étale.
Equations
The forgetful functor from schemes étale over X to schemes over X.
Equations
Instances For
The forgetful functor from schemes étale over X to schemes over X is fully faithful.