Documentation

Mathlib.AlgebraicGeometry.Morphisms.Etale

Étale morphisms #

A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, the induced map Γ(Y, U) ⟶ Γ(X, V) is étale.

Main results #

class AlgebraicGeometry.Etale {X Y : Scheme} (f : X Y) :

A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is étale.

Instances
    @[deprecated AlgebraicGeometry.Etale (since := "2026-02-09")]
    def AlgebraicGeometry.IsEtale {X Y : Scheme} (f : X Y) :

    Alias of AlgebraicGeometry.Etale.


    A morphism of schemes f : X ⟶ Y is étale if for each affine U ⊆ Y and V ⊆ f ⁻¹' U, The induced map Γ(Y, U) ⟶ Γ(X, V) is étale.

    Equations
      Instances For

        The property of scheme morphisms Etale is associated with the ring homomorphism property Etale.

        The composition of étale morphisms is étale.

        @[instance 900]

        Open immersions are étale.

        @[instance 100]
        instance AlgebraicGeometry.Etale.instSmooth {X Y : Scheme} (f : X Y) [Etale f] :

        If f ≫ g is étale and g unramified, then f is étale.

        The category Etale X is the category of schemes étale over X.

        Equations
          Instances For

            The forgetful functor from schemes étale over X to schemes over X.

            Equations
              Instances For

                The forgetful functor from schemes étale over X to schemes over X is fully faithful.

                Equations
                  Instances For