Documentation

Mathlib.FieldTheory.Galois.Infinite

The Fundamental Theorem of Infinite Galois Theory #

In this file, we prove the fundamental theorem of infinite Galois theory and the special case for open subgroups and normal subgroups. We first verify that IntermediateField.fixingSubgroup and IntermediateField.fixedField are inverses of each other between intermediate fields and closed subgroups of the Galois group.

Main definitions and results #

In K/k, for any intermediate field L :

For any subgroup H of Gal(K/k) :

The fundamental theorem of infinite Galois theory :

Special cases :

theorem InfiniteGalois.mem_bot_iff_fixed {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (x : K) :
x โˆˆ โŠฅ โ†” โˆ€ (f : Gal(K/k)), f x = x
theorem InfiniteGalois.mem_range_algebraMap_iff_fixed {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (x : K) :
x โˆˆ Set.range โ‡‘(algebraMap k K) โ†” โˆ€ (f : Gal(K/k)), f x = x

For a subgroup H of Gal(K/k), the fixed field of the image of H under the restriction to a normal intermediate field E is equal to the fixed field of H in K intersecting with E.

The Galois correspondence from intermediate fields to closed subgroups.

Equations
    Instances For
      def InfiniteGalois.GaloisInsertionIntermediateFieldClosedSubgroup {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] :
      GaloisInsertion (โ‡‘OrderDual.toDual โˆ˜ fun (E : IntermediateField k K) => { toSubgroup := E.fixingSubgroup, isClosed' := โ‹ฏ }) ((fun (H : ClosedSubgroup Gal(K/k)) => IntermediateField.fixedField โ†‘H) โˆ˜ โ‡‘OrderDual.toDual)

      The Galois correspondence as a GaloisInsertion

      Equations
        Instances For

          The Galois correspondence as a GaloisCoinsertion

          Equations
            Instances For
              noncomputable def InfiniteGalois.normalAutEquivQuotient {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (H : ClosedSubgroup Gal(K/k)) [(โ†‘H).Normal] :
              Gal(K/k) โงธ โ†‘H โ‰ƒ* Gal(โ†ฅ(IntermediateField.fixedField โ†‘H)/k)

              If H is a closed normal subgroup of Gal(K / k), then Gal(fixedField H / k) is isomorphic to Gal(K / k) โงธ H.

              Equations
                Instances For
                  theorem InfiniteGalois.normalAutEquivQuotient_apply {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (H : ClosedSubgroup Gal(K/k)) [(โ†‘H).Normal] (ฯƒ : Gal(K/k)) :