Documentation

Mathlib.NumberTheory.ModularForms.NormTrace

Norm and trace maps #

Given two subgroups ๐’ข, โ„‹ of GL(2, โ„) with ๐’ข.relindex โ„‹ โ‰  0 (i.e. ๐’ข โŠ“ โ„‹ has finite index in โ„‹), we define a trace map from ModularForm (๐’ข โŠ“ โ„‹) k to ModularForm โ„‹ k.

instance instMulActionSubtypeGeneralLinearGroupFinOfNatNatRealMemSubgroupQuotientSubgroupOf {๐’ข โ„‹ : Subgroup (GL (Fin 2) โ„)} :
MulAction (โ†ฅโ„‹) (โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹)
Equations
    def SlashInvariantForm.quotientFunc {๐’ข โ„‹ : Subgroup (GL (Fin 2) โ„)} {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] (q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹) (ฯ„ : UpperHalfPlane) :

    For f invariant under ๐’ข, this is a function on (โ„‹ โงธ ๐’ข โŠ“ โ„‹) ร— โ„ โ†’ โ„‚ which packages up the translates of f by โ„‹.

    Equations
      Instances For
        @[simp]
        theorem SlashInvariantForm.quotientFunc_mk {๐’ข โ„‹ : Subgroup (GL (Fin 2) โ„)} {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] (h : โ†ฅโ„‹) :
        theorem SlashInvariantForm.quotientFunc_smul {๐’ข โ„‹ : Subgroup (GL (Fin 2) โ„)} {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] {h : GL (Fin 2) โ„} (hh : h โˆˆ โ„‹) (q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹) :
        def SlashInvariantForm.trace {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] [๐’ข.IsFiniteRelIndex โ„‹] :

        The trace of a slash-invariant form, as a slash-invariant form.

        Equations
          Instances For
            @[simp]
            theorem SlashInvariantForm.coe_trace {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] [๐’ข.IsFiniteRelIndex โ„‹] :
            โ‡‘(SlashInvariantForm.trace โ„‹ f) = โˆ‘ q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹, quotientFunc f q
            def SlashInvariantForm.norm {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] [๐’ข.IsFiniteRelIndex โ„‹] [โ„‹.HasDetPlusMinusOne] :
            SlashInvariantForm โ„‹ (k * โ†‘(Nat.card (โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹)))

            The norm of a slash-invariant form, as a slash-invariant form.

            Equations
              Instances For
                @[simp]
                theorem SlashInvariantForm.coe_norm {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [SlashInvariantFormClass F ๐’ข k] [๐’ข.IsFiniteRelIndex โ„‹] [โ„‹.HasDetPlusMinusOne] :
                โ‡‘(SlashInvariantForm.norm โ„‹ f) = โˆ q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹, quotientFunc f q
                def ModularForm.trace {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [ModularFormClass F ๐’ข k] :
                ModularForm โ„‹ k

                The trace of a modular form, as a modular form.

                Equations
                  Instances For
                    @[simp]
                    theorem ModularForm.coe_trace {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [ModularFormClass F ๐’ข k] :
                    โ‡‘(ModularForm.trace โ„‹ f) = โˆ‘ q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹, SlashInvariantForm.quotientFunc f q
                    def CuspForm.trace {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [CuspFormClass F ๐’ข k] :
                    CuspForm โ„‹ k

                    The trace of a cusp form, as a cusp form.

                    Equations
                      Instances For
                        @[simp]
                        theorem CuspForm.coe_trace {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [CuspFormClass F ๐’ข k] :
                        โ‡‘(CuspForm.trace โ„‹ f) = โˆ‘ q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹, SlashInvariantForm.quotientFunc f q
                        def ModularForm.norm {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [โ„‹.HasDetPlusMinusOne] [ModularFormClass F ๐’ข k] :
                        ModularForm โ„‹ (k * โ†‘(Nat.card (โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹)))

                        The norm of a modular form, as a modular form.

                        Equations
                          Instances For
                            @[simp]
                            theorem ModularForm.coe_norm {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [โ„‹.HasDetPlusMinusOne] [ModularFormClass F ๐’ข k] :
                            โ‡‘(ModularForm.norm โ„‹ f) = โˆ q : โ†ฅโ„‹ โงธ ๐’ข.subgroupOf โ„‹, SlashInvariantForm.quotientFunc f q
                            theorem ModularForm.norm_ne_zero {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} {f : F} [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [โ„‹.HasDetPlusMinusOne] [ModularFormClass F ๐’ข k] (hf : โ‡‘f โ‰  0) :
                            theorem ModularForm.norm_eq_zero_iff {๐’ข : Subgroup (GL (Fin 2) โ„)} (โ„‹ : Subgroup (GL (Fin 2) โ„)) {F : Type u_1} (f : F) [FunLike F UpperHalfPlane โ„‚] {k : โ„ค} [๐’ข.IsFiniteRelIndex โ„‹] [โ„‹.HasDetPlusMinusOne] [ModularFormClass F ๐’ข k] :
                            ModularForm.norm โ„‹ f = 0 โ†” โ‡‘f = 0
                            theorem ModularForm.isZero_of_neg_weight {๐’ข : Subgroup (GL (Fin 2) โ„)} [๐’ข.IsArithmetic] {k : โ„ค} (hk : k < 0) (f : ModularForm ๐’ข k) :
                            f = 0
                            theorem ModularForm.eq_const_of_weight_zero {๐’ข : Subgroup (GL (Fin 2) โ„)} [๐’ข.IsArithmetic] (f : ModularForm ๐’ข 0) :
                            โˆƒ (c : โ„‚), โ‡‘f = Function.const UpperHalfPlane c