Residue field of primes in polynomial algebras #
Main results #
Polynomial.residueFieldMapCAlgEquiv:κ(I[X]) ≃ₐ[κ(I)] κ(I)(X)Polynomial.fiberEquivQuotient:κ(p) ⊗[R] (R[X] ⧸ I) = κ(p)[X] / I
@[simp]
theorem
Polynomial.residueFieldMapCAlgEquiv_algebraMap
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
(J : Ideal (Polynomial R))
[J.IsPrime]
[J.LiesOver I]
(hJ : J = Ideal.map C I)
(p : Polynomial R)
:
(residueFieldMapCAlgEquiv I J hJ) ((algebraMap (Polynomial R) J.ResidueField) p) = (algebraMap (Polynomial I.ResidueField) (RatFunc I.ResidueField)) (map (algebraMap R I.ResidueField) p)
@[simp]
theorem
Polynomial.residueFieldMapCAlgEquiv_symm_C
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
(J : Ideal (Polynomial R))
[J.IsPrime]
[J.LiesOver I]
(hJ : J = Ideal.map C I)
(r : I.ResidueField)
:
noncomputable def
Polynomial.fiberEquivQuotient
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(f : Polynomial R →ₐ[R] S)
(hf : Function.Surjective ⇑f)
(p : Ideal R)
[p.IsPrime]
:
p.Fiber S ≃ₐ[p.ResidueField] Polynomial p.ResidueField ⧸ Ideal.map (mapRingHom (algebraMap R p.ResidueField)) (RingHom.ker ↑f)
κ(p) ⊗[R] (R[X] ⧸ I) = κ(p)[X] / I
Equations
Instances For
theorem
Polynomial.fiberEquivQuotient_tmul
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(f : Polynomial R →ₐ[R] S)
(hf : Function.Surjective ⇑f)
(p : Ideal R)
[p.IsPrime]
(a : p.ResidueField)
(b : Polynomial R)
:
(fiberEquivQuotient f hf p) (a ⊗ₜ[R] f b) = (Ideal.Quotient.mk (Ideal.map (mapRingHom (algebraMap R p.ResidueField)) (RingHom.ker ↑f)))
(C a * map (algebraMap R p.ResidueField) b)
theorem
Ideal.exists_mem_span_singleton_map_residueField_eq
{R : Type u_1}
[CommRing R]
(P : Ideal R)
[P.IsPrime]
(I : Ideal (Polynomial R))
:
∃ p ∈ I,
span {Polynomial.map (algebraMap R P.ResidueField) p} = map (Polynomial.mapRingHom (algebraMap R P.ResidueField)) I
Given a prime P of R and an ideal I of R[X], the image of I in κ(P)[X]
is generated by some p ∈ I (basically because κ(P)[X] is a PID).