Documentation Verification Report

Hom

📁 Source: Mathlib/CategoryTheory/Functor/Hom.lean

Statistics

MetricCount
DefinitionsHom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom
66
Theoremshom_map, hom_obj
2
Total68

CategoryTheory.Bicategory.Adj

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Bicategory.InducedBicategory

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: bicategory_Hom

CategoryTheory.Cat

Definitions

NameCategoryTheorems
Hom 📖CompData
3 mathmath: Hom₂.eqToHom_toNatTrans, CategoryTheory.Grothendieck.map_map_fiber, eqToHom_app

CategoryTheory.CatEnrichedOrdinary

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Center

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Comon

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Dial

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.DifferentialObject

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Endofunctor.Algebra

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.EnrichedCategory

Definitions

NameCategoryTheorems
Hom 📖CompOp
79 mathmath: CategoryTheory.eHom_whisker_cancel, CategoryTheory.Iso.eHomCongr_refl, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_comp, CategoryTheory.Iso.eHomCongr_inv_comp_assoc, CategoryTheory.e_comp_id, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv_symm, CategoryTheory.eHomEquiv_id, CategoryTheory.eHomWhiskerRight_comp, CategoryTheory.TransportEnrichment.eId_eq, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition', CategoryTheory.Iso.eHomCongr_hom, CategoryTheory.e_id_comp, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition, CategoryTheory.ForgetEnrichment.equivFunctor_map, CategoryTheory.ForgetEnrichment.equivInverse_map, CategoryTheory.eHomWhiskerRight_comp_assoc, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition_assoc, CategoryTheory.eHomWhiskerLeft_comp, CategoryTheory.Iso.eHomCongr_symm, CategoryTheory.eHomFunctor_obj_obj, CategoryTheory.eHom_whisker_exchange_assoc, CategoryTheory.Iso.eHomCongr_comp_assoc, CategoryTheory.EnrichedFunctor.forget_map, comp_id, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π, CategoryTheory.e_comp_id_assoc, id_comp, CategoryTheory.EnrichedFunctor.id_map, CategoryTheory.eComp_eHomWhiskerRight, CategoryTheory.EnrichedFunctor.comp_map, CategoryTheory.e_assoc_assoc, CategoryTheory.eComp_eHomWhiskerLeft_assoc, CategoryTheory.e_assoc', CategoryTheory.EnrichedOrdinaryCategory.homEquiv_id, CategoryTheory.Iso.eHomCongr_trans, CategoryTheory.eHomFunctor_map_app, CategoryTheory.EnrichedFunctor.map_id, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_map, CategoryTheory.ForgetEnrichment.homOf_comp, CategoryTheory.eHom_whisker_cancel_assoc, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv, CategoryTheory.e_id_comp_assoc, CategoryTheory.ForgetEnrichment.homTo_comp, CategoryTheory.eComp_op_eq_assoc, CategoryTheory.eHomWhiskerLeft_id, CategoryTheory.TransportEnrichment.eComp_eq, CategoryTheory.eComp_eHomWhiskerRight_assoc, CategoryTheory.EnrichedFunctor.map_comp_assoc, CategoryTheory.tensorHom_eComp_op_eq_assoc, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.eComp_eHomWhiskerLeft, CategoryTheory.tensorHom_eComp_op_eq, CategoryTheory.EnrichedFunctor.map_comp, CategoryTheory.eHomWhiskerRight_id, CategoryTheory.GradedNatTrans.naturality_assoc, CategoryTheory.Iso.eHomCongr_comp, CategoryTheory.eHom_whisker_cancel_inv_assoc, CategoryTheory.eHom_whisker_cancel_inv, CategoryTheory.CatEnriched.id_eq, CategoryTheory.eHomEquiv_comp, CategoryTheory.MonoidalClosed.enrichedCategorySelf_hom, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π_assoc, CategoryTheory.Iso.eHomCongr_inv, CategoryTheory.EnrichedCat.whiskerRight_out_app, CategoryTheory.eHomEquiv_comp_assoc, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition'_assoc, CategoryTheory.e_assoc'_assoc, CategoryTheory.Enriched.FunctorCategory.enrichedComp_π, CategoryTheory.Iso.eHomCongr_inv_comp, assoc, CategoryTheory.eHomWhiskerLeft_comp_assoc, CategoryTheory.EnrichedFunctor.map_id_assoc, CategoryTheory.eComp_op_eq, CategoryTheory.e_assoc, CategoryTheory.GradedNatTrans.naturality, CategoryTheory.enrichedNatTransYoneda_map_app, CategoryTheory.Enriched.FunctorCategory.diagram_obj_obj, CategoryTheory.eHom_whisker_exchange, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivFunctor_map

CategoryTheory.Factorisation

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.FreeBicategory

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.FreeMonoidalCategory

Definitions

NameCategoryTheorems
Hom 📖CompData
11 mathmath: mk_ρ_hom, mk_id, mk_whiskerRight, mk_comp, mk_l_inv, mk_l_hom, mk_α_hom, mk_ρ_inv, mk_whiskerLeft, mk_α_inv, mk_tensor

CategoryTheory.Functor

Definitions

NameCategoryTheorems
hom 📖CompOp
2 mathmath: hom_map, hom_obj

Theorems

NameKindAssumesProvesValidatesDepends On
hom_map 📖mathematicalmap
Opposite
CategoryTheory.uniformProd
CategoryTheory.Category.opposite
CategoryTheory.types
hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom
hom_obj 📖mathematicalobj
Opposite
CategoryTheory.uniformProd
CategoryTheory.Category.opposite
CategoryTheory.types
hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop

CategoryTheory.Grothendieck

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.GrothendieckTopology.OneHypercover

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.GrothendieckTopology.Point

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Idempotents.Karoubi

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.InducedCategory

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.InjectiveResolution

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Join

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.LaxMonoidalFunctor

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.CategoricalPullback

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.CategoricalPullback.CatCommSqOver

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.ColimitPresentation.Total

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.FormalCoproduct

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.WalkingCospan

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.Limits.WalkingMulticospan

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.WalkingMultispan

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.WalkingParallelFamily

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.WalkingReflexivePair

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.WalkingSpan

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.Limits.WidePullbackShape

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Limits.WidePushoutShape

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.LocalizerMorphism.LeftResolution

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.LocalizerMorphism.RightResolution

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Mat_

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.Mod_

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Mon

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: hom_injective

CategoryTheory.Monad.Algebra

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: CategoryTheory.Monad.adj_counit

CategoryTheory.MonoidalCategory.DayFunctor

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.MorphismProperty.Comma

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.MorphismProperty.LeftFraction.Localization

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.Oplax.OplaxTrans

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Oplax.StrongTrans

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Pairwise

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.PreGaloisCategory.PointedGaloisObject

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.PreOneHypercover

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.PreZeroHypercover

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Precoverage.ZeroHypercover

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.ProjectiveResolution

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Pseudofunctor.CoGrothendieck

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Pseudofunctor.DescentData

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Pseudofunctor.Grothendieck

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Pseudofunctor.StrongTrans

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Quotient

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.RelCat

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Sheaf

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.ShortComplex.SnakeInput

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.SimplicialThickening.SimplicialCategory

Definitions

NameCategoryTheorems
Hom 📖CompOp
3 mathmath: comp_id, assoc, id_comp

CategoryTheory.SingleFunctors

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Square

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.Triangulated.SpectralObject

Definitions

NameCategoryTheorems
Hom 📖CompData

CategoryTheory.WithInitial

Definitions

NameCategoryTheorems
Hom 📖CompOp

CategoryTheory.WithTerminal

Definitions

NameCategoryTheorems
Hom 📖CompOp

---

← Back to Index