Documentation Verification Report

Hom

📁 Source: Mathlib/Topology/VectorBundle/Hom.lean

Statistics

MetricCount
DefinitionsHom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, fiberBundle, topologicalSpaceTotalSpace, vectorPrebundle, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, continuousLinearMap, continuousLinearMapCoordChange, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, Hom, continuousLinearMap, Hom
74
TheoremsmemTrivializationAtlas, vectorBundle, clm_bundle_apply, clm_bundle_apply₂, clm_apply_of_inCoordinates, clm_bundle_apply, clm_bundle_apply₂, clm_bundle_apply, clm_bundle_apply₂, clm_apply_of_inCoordinates, clm_bundle_apply, clm_bundle_apply₂, isLinear, continuousLinearMapCoordChange_apply, continuousLinearMap_apply, continuousLinearMap_symm_apply, continuousLinearMap_symm_apply', continuousOn_continuousLinearMapCoordChange, baseSet_continuousLinearMap, continuousLinearMap_apply, continuousAt_hom_bundle, continuousWithinAt_hom_bundle, hom_trivializationAt, hom_trivializationAt_apply, hom_trivializationAt_baseSet, hom_trivializationAt_source, hom_trivializationAt_target, inCoordinates_apply_eq₂
28
Total102

AddCommGrpCat

Definitions

NameCategoryTheorems
Hom 📖CompData

AddCommMonCat

Definitions

NameCategoryTheorems
Hom 📖CompData

AddGrpCat

Definitions

NameCategoryTheorems
Hom 📖CompData

AddMagmaCat

Definitions

NameCategoryTheorems
Hom 📖CompData

AddMonCat

Definitions

NameCategoryTheorems
Hom 📖CompData

AddSemigrp

Definitions

NameCategoryTheorems
Hom 📖CompData

AlgCat

Definitions

NameCategoryTheorems
Hom 📖CompData

AlgebraicGeometry.LocallyRingedSpace

Definitions

NameCategoryTheorems
Hom 📖CompData

AlgebraicGeometry.PresheafedSpace

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: map_comp_c_app

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
Hom 📖CompData

AlgebraicGeometry.Scheme.Cover

Definitions

NameCategoryTheorems
Hom 📖CompOp

AlgebraicGeometry.Scheme.Modules

Definitions

NameCategoryTheorems
Hom 📖CompOp

BddDistLat

Definitions

NameCategoryTheorems
Hom 📖CompData

BddLat

Definitions

NameCategoryTheorems
Hom 📖CompData

BddOrd

Definitions

NameCategoryTheorems
Hom 📖CompData

BialgCat

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: Hom.toBialgHom_injective

Bimod

Definitions

NameCategoryTheorems
Hom 📖CompData

Bipointed

Definitions

NameCategoryTheorems
Hom 📖CompData

BoolAlg

Definitions

NameCategoryTheorems
Hom 📖CompData

BoolRing

Definitions

NameCategoryTheorems
Hom 📖CompData

Bundle.ContinuousLinearMap

Definitions

NameCategoryTheorems
fiberBundle 📖CompOp
18 mathmath: Bundle.ContMDiffRiemannianMetric.contMDiff, vectorBundle, Bundle.ContinuousRiemannianMetric.continuous, ContMDiffVectorBundle.continuousLinearMap, inCoordinates_apply_eq₂, mdifferentiableAt_hom_bundle, IsContMDiffRiemannianBundle.exists_contMDiff, IsContinuousRiemannianBundle.exists_continuous, contMDiffAt_hom_bundle, hom_trivializationAt, hom_trivializationAt_source, hom_chart, hom_trivializationAt_apply, hom_trivializationAt_baseSet, memTrivializationAtlas, mdifferentiableWithinAt_hom_bundle, hom_trivializationAt_target, contMDiffWithinAt_hom_bundle
topologicalSpaceTotalSpace 📖CompOp
22 mathmath: Bundle.ContMDiffRiemannianMetric.contMDiff, vectorBundle, Bundle.ContinuousRiemannianMetric.continuous, ContMDiffVectorBundle.continuousLinearMap, inCoordinates_apply_eq₂, mdifferentiableAt_hom_bundle, IsContMDiffRiemannianBundle.exists_contMDiff, IsContinuousRiemannianBundle.exists_continuous, Trivialization.baseSet_continuousLinearMap, contMDiffAt_hom_bundle, Trivialization.continuousLinearMap_apply, hom_trivializationAt, hom_trivializationAt_source, continuousAt_hom_bundle, continuousWithinAt_hom_bundle, hom_chart, hom_trivializationAt_apply, hom_trivializationAt_baseSet, memTrivializationAtlas, mdifferentiableWithinAt_hom_bundle, hom_trivializationAt_target, contMDiffWithinAt_hom_bundle
vectorPrebundle 📖CompOp
1 mathmath: vectorPrebundle.isContMDiff

Theorems

NameKindAssumesProvesValidatesDepends On
memTrivializationAtlas 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MemTrivializationAtlas
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
topologicalSpaceTotalSpace
fiberBundle
Trivialization.continuousLinearMap
SeminormedAddCommGroup.toIsTopologicalAddGroup
vectorBundle 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
VectorBundle
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
ContinuousSMul.continuousConstSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
ContinuousLinearMap.toNormedAddCommGroup
ContinuousLinearMap.toNormedSpace
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
topologicalSpaceTotalSpace
ContinuousLinearMap.topologicalSpace
fiberBundle
VectorPrebundle.toVectorBundle
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul

CoalgCat

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: Hom.toCoalgHom_injective

CommAlgCat

Definitions

NameCategoryTheorems
Hom 📖CompData

CommBialgCat

Definitions

NameCategoryTheorems
Hom 📖CompData

CommGrpCat

Definitions

NameCategoryTheorems
Hom 📖CompData

CommMonCat

Definitions

NameCategoryTheorems
Hom 📖CompData

CommRingCat

Definitions

NameCategoryTheorems
Hom 📖CompData

CommSemiRingCat

Definitions

NameCategoryTheorems
Hom 📖CompData

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
clm_bundle_apply 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Continuous
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
RingHomIsometric.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
RingHomIsometric.ids
ContinuousOn.clm_bundle_apply
clm_bundle_apply₂ 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Continuous
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousSMul.continuousConstSMul
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
ContinuousLinearMap.toNormedAddCommGroup
RingHomIsometric.ids
ContinuousLinearMap.toNormedSpace
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
Bundle.ContinuousLinearMap.fiberBundle
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
RingHomIsometric.ids
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
ContinuousOn.clm_bundle_apply₂

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
clm_apply_of_inCoordinates 📖mathematicalContinuousAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.inCoordinates
AddCommGroup.toAddCommMonoid
Bundle.TotalSpace
DFunLike.coe
ContinuousLinearMap.funLike
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousWithinAt_univ
ContinuousWithinAt.clm_apply_of_inCoordinates
clm_bundle_apply 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousAt
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
RingHomIsometric.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
RingHomIsometric.ids
ContinuousWithinAt.clm_bundle_apply
clm_bundle_apply₂ 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousAt
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousSMul.continuousConstSMul
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
ContinuousLinearMap.toNormedAddCommGroup
RingHomIsometric.ids
ContinuousLinearMap.toNormedSpace
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
Bundle.ContinuousLinearMap.fiberBundle
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
RingHomIsometric.ids
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
clm_bundle_apply

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
clm_bundle_apply 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousOn
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
RingHomIsometric.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
RingHomIsometric.ids
ContinuousWithinAt.clm_bundle_apply
clm_bundle_apply₂ 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousOn
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousSMul.continuousConstSMul
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
ContinuousLinearMap.toNormedAddCommGroup
RingHomIsometric.ids
ContinuousLinearMap.toNormedSpace
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
Bundle.ContinuousLinearMap.fiberBundle
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
RingHomIsometric.ids
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
ContinuousWithinAt.clm_bundle_apply₂

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
clm_apply_of_inCoordinates 📖mathematicalContinuousWithinAt
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.inCoordinates
AddCommGroup.toAddCommMonoid
Bundle.TotalSpace
DFunLike.coe
ContinuousLinearMap.funLike
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousWithinAt_insert_self
FiberBundle.continuousWithinAt_totalSpace
congr_of_eventuallyEq_of_mem
clm_apply
IsOpen.mem_nhds
Trivialization.open_baseSet
FiberBundle.mem_baseSet_trivializationAt'
Filter.mp_mem
Filter.univ_mem'
RingHomCompTriple.right_ids
RingHomInvPair.ids
trivialization_linear
instMemTrivializationAtlasTrivializationAt
RingHomCompTriple.ids
ContinuousLinearMap.inCoordinates_eq
Set.mem_insert
clm_bundle_apply 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousWithinAt
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
RingHomIsometric.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
RingHomIsometric.ids
clm_apply_of_inCoordinates
SeminormedAddCommGroup.toIsTopologicalAddGroup
clm_bundle_apply₂ 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousWithinAt
Bundle.TotalSpace
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousSMul.continuousConstSMul
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
ContinuousLinearMap.toNormedAddCommGroup
RingHomIsometric.ids
ContinuousLinearMap.toNormedSpace
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
Bundle.ContinuousLinearMap.fiberBundle
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
Bundle.TotalSpace.mk'
DFunLike.coe
ContinuousLinearMap.funLike
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
RingHomIsometric.ids
Bundle.ContinuousLinearMap.vectorBundle
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.continuousSMul
RingHomSurjective.ids
clm_bundle_apply

DistLat

Definitions

NameCategoryTheorems
Hom 📖CompData

FinBddDistLat

Definitions

NameCategoryTheorems
Hom 📖CompData

FirstOrder.Language

Definitions

NameCategoryTheorems
Hom 📖CompData
32 mathmath: Hom.domRestrict_toFun, Substructure.coe_comap, Hom.ext_iff, Function.emptyHom_toFun, Hom.instStrongHomClassOfIsAlgebraic, Hom.mem_range, Hom.mem_range_self, Hom.id_apply, Embedding.toHom_injective, Hom.map_fun, Hom.mem_eqLocus, Substructure.coe_map, Hom.comp_apply, Embedding.coe_toHom, Hom.toFun_eq_coe, Embedding.toHom_comp_injective, Hom.map_rel, Hom.range_coe, Equiv.coe_toHom, Hom.range_eq_top, HomClass.toHom_toFun, Substructure.map_closure, Hom.map_constants, ElementaryEmbedding.coe_toHom, Structure.FG.countable_hom, Hom.homClass, Substructure.mem_map_of_mem, Substructure.mem_map, Substructure.mem_comap, Structure.FG.instCountable_hom, Substructure.closure_image, Substructure.apply_coe_mem_map

FreeSimplexQuiver

Definitions

NameCategoryTheorems
Hom 📖CompData

Frm

Definitions

NameCategoryTheorems
Hom 📖CompData

GrpCat

Definitions

NameCategoryTheorems
Hom 📖CompData

HeytAlg

Definitions

NameCategoryTheorems
Hom 📖CompData

HomologicalComplex

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: hom_f_injective

HopfAlgCat

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: Hom.toBialgHom_injective

Lat

Definitions

NameCategoryTheorems
Hom 📖CompData

LieRinehartAlgebra

Definitions

NameCategoryTheorems
Hom 📖CompData

LinOrd

Definitions

NameCategoryTheorems
Hom 📖CompData

MagmaCat

Definitions

NameCategoryTheorems
Hom 📖CompData

ModuleCat

Definitions

NameCategoryTheorems
Hom 📖CompData
3 mathmath: hom_surjective, hom_bijective, hom_injective

MonCat

Definitions

NameCategoryTheorems
Hom 📖CompData

PartOrd

Definitions

NameCategoryTheorems
Hom 📖CompData

PartOrdEmb

Definitions

NameCategoryTheorems
Hom 📖CompData

Pointed

Definitions

NameCategoryTheorems
Hom 📖CompData

Preord

Definitions

NameCategoryTheorems
Hom 📖CompData

PresheafOfModules

Definitions

NameCategoryTheorems
Hom 📖CompData

Pretrivialization

Definitions

NameCategoryTheorems
continuousLinearMap 📖CompOp
5 mathmath: continuousLinearMap_symm_apply', continuousLinearMapCoordChange_apply, continuousLinearMap.isLinear, continuousLinearMap_apply, continuousLinearMap_symm_apply
continuousLinearMapCoordChange 📖CompOp
4 mathmath: continuousLinearMapCoordChange_apply, contMDiffOn_continuousLinearMapCoordChange, mdifferentiableOn_continuousLinearMapCoordChange, continuousOn_continuousLinearMapCoordChange

Theorems

NameKindAssumesProvesValidatesDepends On
continuousLinearMapCoordChange_apply 📖mathematicalSet
Set.instMembership
Set.instInter
Trivialization.baseSet
Bundle.TotalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Bundle.TotalSpace.proj
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.funLike
continuousLinearMapCoordChange
toFun'
AddCommGroup.toAddCommMonoid
continuousLinearMap
symm
ContinuousLinearMap.zero
ContinuousLinearMap.ext
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
RingHomCompTriple.right_ids
RingHomCompTriple.ids
ContinuousLinearMap.comp.congr_simp
continuousLinearMap_symm_apply'
RingHomInvPair.ids
Trivialization.coordChangeL_apply
Trivialization.coe_linearMapAt_of_mem
continuousLinearMap_apply 📖mathematicaltoFun'
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.TotalSpace
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.TotalSpace.proj
continuousLinearMap
ContinuousLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.right_ids
Trivialization.continuousLinearMapAt
RingHomCompTriple.ids
Bundle.TotalSpace.snd
Trivialization.symmL
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousLinearMap_symm_apply 📖mathematicalPartialEquiv.toFun
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.TotalSpace
AddCommGroup.toAddCommMonoid
PartialEquiv.symm
toPartialEquiv
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.TotalSpace.proj
continuousLinearMap
ContinuousLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.right_ids
Trivialization.symmL
RingHomCompTriple.ids
Trivialization.continuousLinearMapAt
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousLinearMap_symm_apply' 📖mathematicalSet
Set.instMembership
Set.instInter
Trivialization.baseSet
Bundle.TotalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Bundle.TotalSpace.proj
symm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.zero
continuousLinearMap
ContinuousLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.right_ids
Trivialization.symmL
RingHomCompTriple.ids
Trivialization.continuousLinearMapAt
SeminormedAddCommGroup.toIsTopologicalAddGroup
RingHomCompTriple.right_ids
RingHomCompTriple.ids
symm_coe_proj
symm_apply
continuousOn_continuousLinearMapCoordChange 📖mathematicalContinuousOn
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
ContinuousLinearMap.topologicalAddGroup
continuousLinearMapCoordChange
trivialization_linear
AddCommGroup.toAddCommMonoid
Set
Set.instInter
Trivialization.baseSet
Bundle.TotalSpace
Bundle.TotalSpace.proj
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.smulCommClass
ContinuousLinearMap.continuousConstSMul
RingHomCompTriple.right_ids
RingHomIsometric.ids
ContinuousLinearMap.continuous
RingHomCompTriple.ids
RingHomInvPair.ids
trivialization_linear
continuousOn_coordChange
ContinuousOn.congr
ContinuousOn.clm_comp
Continuous.comp_continuousOn
ContinuousOn.mono
ContinuousLinearMap.ext

Pretrivialization.continuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
isLinear 📖mathematicalContinuousAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pretrivialization.IsLinear
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
ContinuousSMul.continuousConstSMul
Pretrivialization.continuousLinearMap
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
ContinuousSMul.continuousConstSMul
RingHomCompTriple.right_ids
RingHomCompTriple.ids
ContinuousLinearMap.comp.congr_simp
ContinuousLinearMap.add_comp
ContinuousLinearMap.comp_add
ContinuousLinearMap.comp_smulₛₗ

ProfiniteAddGrp

Definitions

NameCategoryTheorems
Hom 📖CompData

ProfiniteGrp

Definitions

NameCategoryTheorems
Hom 📖CompData

QuadraticModuleCat

Definitions

NameCategoryTheorems
Hom 📖CompData
1 mathmath: Hom.toIsometry_injective

Quiver

Definitions

NameCategoryTheorems
Hom 📖CompOp
4706 mathmath: TopologicalSpace.OpenNhds.coe_id, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_right, CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv, CategoryTheory.ShortComplex.opcyclesMap_smul, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Limits.Fork.IsLimit.homIso_natural, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π, CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, CategoryTheory.ShortComplex.toCycles_comp_homologyπ, Rep.resCoindHomEquiv_symm_apply_hom, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_assoc, CategoryTheory.Functor.functorHomEquiv_apply_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.Bicategory.prod_whiskerLeft_snd, Rep.resCoindHomEquiv_apply_hom, CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_inv_app, CommRingCat.HomTopology.isEmbedding_precomp_of_surjective, CategoryTheory.Functor.map_homCongr, CategoryTheory.Adjunction.compUliftCoyonedaIso_hom_app_app_down, CategoryTheory.ShortComplex.toCycles_comp_homologyπ_assoc, ModuleCat.hom_zero, CategoryTheory.uliftCoyonedaEquiv_apply, CategoryTheory.Limits.eq_zero_of_mono_cokernel, CategoryTheory.Limits.zero_of_from_zero, CategoryTheory.TwoSquare.equivNatTrans_symm_apply, CategoryTheory.ShortComplex.Homotopy.h₀_f_assoc, CommRingCat.HomTopology.isClosedEmbedding_precomp_of_surjective, Bicategory.Opposite.op2_associator, CategoryTheory.Presieve.ofArrows_eq_ofArrows_uncurry, CategoryTheory.Limits.cokernelBiproductιIso_hom, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.Types.instIsCorepresentableForgetTypeHom, CategoryTheory.Limits.limitConeOfUnique_cone_π, CategoryTheory.StrictPseudofunctorPreCore.map_id, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, TopModuleCat.hom_zero, CategoryTheory.Bicategory.RightExtension.w_assoc, SemimoduleCat.Hom.hom₂_apply, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Functor.mapComposableArrowsObjMk₂Iso_inv_app, CategoryTheory.uliftCoyonedaIsoCoyoneda_hom_app_app, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp', CategoryTheory.coyonedaEquiv_symm_app_apply, CategoryTheory.Presheaf.instIsLocallySurjectiveHomWhiskerRightOppositeForget, CategoryTheory.Oplax.StrongTrans.Modification.vcomp_app, HomologicalComplex.singleMapHomologicalComplex_hom_app_ne, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.ObjectProperty.isoModSerre_zero_iff, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, TopCat.PrelocalPredicate.res, CategoryTheory.PreGaloisCategory.mulAction_def, CategoryTheory.Pseudofunctor.map₂_associator_assoc, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, CategoryTheory.ShortComplex.SnakeInput.w₀₂_assoc, CategoryTheory.Sheaf.ΓHomEquiv_naturality_left_symm, TopologicalSpace.Opens.id_apply, CategoryTheory.preadditiveCoyonedaObj_map, CategoryTheory.Limits.reflexivePair.diagramIsoReflexivePair_hom_app, CategoryTheory.Functor.homObjEquiv_apply_app, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three_assoc, CategoryTheory.Limits.Bicone.π_of_isColimit, AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f, CategoryTheory.CatEnrichedOrdinary.id_hComp_heq, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.Limits.inr_of_isLimit, CategoryTheory.sum_whiskerRight, CategoryTheory.LaxFunctor.map₂_associator_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, CategoryTheory.Limits.coprod.inl_snd, CategoryTheory.ShortComplex.Homotopy.refl_h₀, LightProfinite.proj_comp_transitionMap, HomologicalComplex.dFrom_comp_xNextIsoSelf, CategoryTheory.Preadditive.IsIso.comp_left_eq_zero, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, CategoryTheory.Presieve.uncurry_bind, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc, CategoryTheory.ShortComplex.homologyMap_smul, CategoryTheory.opHom_apply, CategoryTheory.NatTrans.prod'_app_snd, CategoryTheory.Bicategory.Adj.rightUnitor_hom_τl, CategoryTheory.ShortComplex.hasHomology_of_zeros, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Limits.kernelIsoOfEq_trans, CategoryTheory.Arrow.equivSigma_symm_apply_left, CategoryTheory.Preadditive.hasKernel_of_hasEqualizer, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_snd, CategoryTheory.NonPreadditiveAbelian.neg_sub', CategoryTheory.conjugateEquiv_iso, CategoryTheory.Cat.Hom₂.comp_app, CategoryTheory.ShortComplex.Homotopy.comm₁, CategoryTheory.ShortComplex.HomologyData.ofIso_right_p, CategoryTheory.Bicategory.Comonad.comul_assoc_flip, HomotopyCategory.quotient_map_out_comp_out, Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil, CategoryTheory.ShortComplex.Homotopy.comp_h₃, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, CategoryTheory.Join.mapPairId_hom_app, CategoryTheory.Sheaf.instIsLocallySurjectiveHomToImage, TopCat.presheafToType_map, CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearCoyoneda_obj_obj_carrier, CategoryTheory.Limits.biprod.lift_eq, CategoryTheory.ShortComplex.RightHomologyData.ι_g', CategoryTheory.OplaxFunctor.id_mapComp, Rep.MonoidalClosed.linearHomEquiv_symm_hom, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_comp, CategoryTheory.Iso.eHomCongr_inv_comp_assoc, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_map, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc, CategoryTheory.Join.mapWhiskerLeft_app, HomologicalComplex.double_d_eq_zero₀, Action.neg_hom, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_two, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.ComposableArrows.IsComplex.zero'_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Linear.instMonoHSMulHomOfInvertible, HomologicalComplex.mapBifunctor₁₂.d_eq, CategoryTheory.Localization.Preadditive.homEquiv_symm_apply, CategoryTheory.Comma.opFunctor_obj, CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ω₀, CategoryTheory.ReflQuiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.Bicategory.eqToHomTransIso_refl_left, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.id_map₂, SimplicialObject.Splitting.IndexSet.epiComp_fst, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, CategoryTheory.MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, Bicategory.Opposite.op2_associator_inv, HomologicalComplex.dFrom_eq_zero, CategoryTheory.Pseudofunctor.map₂_associator_app_assoc, CategoryTheory.Bicategory.Pith.inclusion_mapComp, LightCondensed.ihomPoints_apply, TopCat.Presheaf.isSheaf_iff_isSheafUniqueGluing_types, CategoryTheory.shrinkYonedaEquiv_comp, CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection', CategoryTheory.ShortComplex.homologyMap_add, CategoryTheory.Grp.Hom.hom_hom_zpow, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.BicartesianSq.of_is_biproduct₁, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_hom_iso, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ι_presheafHom, CategoryTheory.Mon_Class.mul_comp, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, CategoryTheory.sum_tensor, CategoryTheory.Bicategory.conjugateEquiv_whiskerRight, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, HomotopicalAlgebra.CofibrantObject.homRel_equivalence_of_isFibrant_tgt, CategoryTheory.CategoryOfElements.map_snd, CategoryTheory.Bicategory.LeftLift.whiskering_map, Action.sum_hom, CategoryTheory.NonPreadditiveAbelian.diag_σ, CategoryTheory.iterated_mateEquiv_conjugateEquiv, CategoryTheory.Bicategory.leftUnitor_inv_naturality_assoc, CategoryTheory.Limits.monoFactorisationZero_I, CategoryTheory.Mon_Class.comp_mul, CategoryTheory.Limits.terminal.subsingleton_to, CategoryTheory.ShortComplex.leftHomologyMap'_sub, CategoryTheory.Limits.biprod.inl_snd_assoc, SimplicialObject.Splitting.IndexSet.id_fst, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.Sieve.functor_obj, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, PresheafOfModules.add_app, CategoryTheory.prod_Hom, CategoryTheory.IsPushout.of_is_bilimit', starEquivCostar_symm_apply_fst, CategoryTheory.ShortComplex.Homotopy.sub_h₀, CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection, CategoryTheory.Bicategory.whiskerLeft_inv_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_hom, CategoryTheory.FreeBicategory.lift_mapId, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, TopCat.Presheaf.coveringOfPresieve.iSup_eq_of_mem_grothendieck, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_leftUnitor, CategoryTheory.ShortComplex.homologyMap_zero, CategoryTheory.Bicategory.Adj.associator_inv_τr, CategoryTheory.Bicategory.Prod.sectL_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app, CategoryTheory.ExponentiableMorphism.homEquiv_symm_apply_eq, CategoryTheory.Grp_Class.comp_inv, groupHomology.map₁_one, CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CategoryTheory.Functor.coe_mapLinearMap, AddCommGrpCat.hom_add, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, groupCohomology.d₀₁_comp_d₁₂, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, CategoryTheory.Functor.map_mul, prevD_comp_left, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg', ModuleCat.freeHomEquiv_apply, CategoryTheory.Idempotents.neg_def, CategoryTheory.Bicategory.whiskerRight_comp_assoc, CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃_assoc, CategoryTheory.Bicategory.Prod.snd_map, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv_symm, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom, CategoryTheory.Limits.Multicofork.ofπ_ι_app, CategoryTheory.ShortComplex.RightHomologyMapData.neg_φH, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_inv_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_def, CategoryTheory.Bicategory.LeftExtension.w_assoc, TopCat.coe_of_of, CategoryTheory.Functor.IsEventuallyConstantTo.coneπApp_eq, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.shrinkYonedaEquiv_symm_map_assoc, CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_apply, CategoryTheory.CatEnriched.id_hComp, CategoryTheory.OplaxFunctor.map₂_associator, CategoryTheory.Bicategory.inv_hom_whiskerRight_whiskerRight_assoc, CategoryTheory.Bicategory.Adj.rIso_inv, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, CategoryTheory.Bicategory.mateEquiv_comp_id_right, CategoryTheory.CatCenter.app_sub, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_comp_as_app, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.Bicategory.inv_hom_whiskerRight_assoc, CategoryTheory.Bicategory.whisker_exchange, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv, CategoryTheory.Bicategory.inv_hom_whiskerRight, TopModuleCat.hom_zero_apply, HomologicalComplex.extend.d_comp_eq_zero_iff, CategoryTheory.finrank_hom_simple_simple_le_one, CategoryTheory.Functor.hom_map, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_comp, CategoryTheory.sum.inlCompInrCompInverseAssociator_hom_app_down_down, CategoryTheory.Functor.uliftCoyonedaCoreprXIso_hom_app, CategoryTheory.LaxFunctor.map₂_leftUnitor_assoc, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg, CategoryTheory.eHomEquiv_id, CategoryTheory.Cat.associator_hom_app, CategoryTheory.Quiv.homEquivOfIso_symm_apply, CategoryTheory.Limits.kernelBiprodSndIso_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_obj, CochainComplex.mappingCone.inr_f_fst_v, CategoryTheory.ShortComplex.Homotopy.smul_h₁, CategoryTheory.Bicategory.pentagon_inv, CategoryTheory.ShortComplex.zero_assoc, AlgebraicGeometry.Scheme.Modules.pushforwardCongr_hom_app_app, AddMonCat.zeroHom_apply, CategoryTheory.MorphismProperty.LeftFraction₂.map_add, groupHomology.mapShortComplexH1_zero, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app_assoc, CategoryTheory.ShortComplex.RightHomologyData.wp, SimplicialObject.Splitting.IndexSet.fac_pull_assoc, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₁, CategoryTheory.Bicategory.Adjunction.homEquiv₂_symm_apply, CategoryTheory.PreGaloisCategory.endEquivSectionsFibers_π, CategoryTheory.Sieve.pushforward_apply, CategoryTheory.Bicategory.InducedBicategory.Hom.category_id_hom, CategoryTheory.LaxFunctor.comp_mapId, CategoryTheory.ShiftedHom.mk₀_zero, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_assoc, CategoryTheory.down_comp_assoc, CategoryTheory.Pseudofunctor.map₂_left_unitor_assoc, HomologicalComplex.homotopyCofiber.inrX_fstX_assoc, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_φ, CategoryTheory.GrothendieckTopology.Cover.Arrow.ext_iff, CategoryTheory.ShortComplex.leftHomologyMap_sub, CategoryTheory.Bicategory.Pith.comp_of, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, CategoryTheory.Adjunction.homEquiv_naturality_left_square, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, LightCondensed.ihomPoints_symm_comp, CategoryTheory.NonPreadditiveAbelian.add_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.yoneda_map_app, CategoryTheory.OplaxFunctor.map₂_associator_app, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, CategoryTheory.ShortComplex.RightHomologyData.wp_assoc, groupHomology.mapShortComplexH2_zero, CategoryTheory.StrictPseudofunctorCore.map₂_left_unitor, CategoryTheory.Bicategory.Lan.existsUnique, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.typeEquiv_functor_obj_val_obj, AlgebraicGeometry.Spec.map_surjective, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_as_app, CategoryTheory.Oplax.OplaxTrans.Modification.vcomp_app, CategoryTheory.Bicategory.eqToHomTransIso_refl_refl, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', CategoryTheory.Limits.biproduct.ι_π_assoc, CategoryTheory.curryingIso_hom_toFunctor_obj_map, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition', CategoryTheory.FreeBicategory.mk_left_unitor_inv, AlgebraicGeometry.Scheme.SpecToEquivOfField_eq_iff, CategoryTheory.Limits.Cone.equiv_inv_pt, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Grp_Class.comp_zpow, SSet.OneTruncation₂.nerveHomEquiv_id, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Comon.uniqueHomToTrivial_default_hom, CategoryTheory.Bicategory.mateEquiv_vcomp, CategoryTheory.Pseudofunctor.StrongTrans.comp_app, CategoryTheory.InducedCategory.homLinearEquiv_apply, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, CategoryTheory.yonedaCommGrpGrpObj_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.ShrinkHoms.id_def, AlgebraicGeometry.pointsPi_surjective_of_isAffine, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.conjugateEquiv_symm_id, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_right_symm, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id_symm, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_pullbackObjUnitToUnit, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, CochainComplex.IsKInjective.nonempty_homotopy_zero, CategoryTheory.nerve.functorOfNerveMap_map, CategoryTheory.Mon.hom_injective, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.Functor.prod'_μ_fst, homOfEq_heq, CategoryTheory.Bicategory.Adj.comp_τl_assoc, CategoryTheory.StrictPseudofunctor.mk'_obj, CategoryTheory.ShortComplex.exact_iff_iCycles_pOpcycles_zero, CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, CategoryTheory.Oplax.OplaxTrans.StrongCore.naturality_hom, CategoryTheory.Bicategory.Adj.forget₁_mapId, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inl, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.Localization.liftNatTrans_add, CategoryTheory.Abelian.Ext.mk₀_addEquiv₀_apply, CategoryTheory.MonoidalCategory.externalProductBifunctor_map_app, CategoryTheory.Limits.BinaryBicone.toBiconeFunctor_obj_π, CategoryTheory.sum.inrCompInrCompInverseAssociator_hom_app_down, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, SimplicialObject.Splitting.PInfty_comp_πSummand_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.Limits.IsZero.unique_to, CategoryTheory.SingleObj.id_as_one, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Functor.PreservesHomology.preservesKernels, CategoryTheory.LocallyDiscrete.id_as, SSet.Subcomplex.range_eq_ofSimplex, CategoryTheory.Oplax.OplaxTrans.homCategory_id_as_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, HomologicalComplex.dTo_eq_zero, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_apply_f, CategoryTheory.ShortComplex.opcyclesMap_sub, CategoryTheory.NonPreadditiveAbelian.add_def, Opens.mayerVietorisSquare_X₃, AddMonCat.hom_zero, Rep.diagonalHomEquiv_symm_apply, CategoryTheory.BicategoricalCoherence.left'_iso, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_associator, CategoryTheory.ULiftHom.down_map, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_inv, CategoryTheory.ShortComplex.opcyclesMap'_sub, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, CategoryTheory.ShortComplex.RightHomologyMapData.neg_φQ, CategoryTheory.Functor.RepresentableBy.homEquiv_eq, CategoryTheory.Bicategory.LeftExtension.ofCompId_right, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_id, CategoryTheory.linearYoneda_obj_map, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.CountableCategory.countableHom, CategoryTheory.Functor.mapComposableArrowsObjMk₁Iso_inv_app, PresheafOfModules.homEquivOfIsLocallyBijective_symm_apply, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CommRingCat.HomTopology.instCompactSpaceHomOfIsTopologicalRingOfT1SpaceOfCarrier, CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.prodOpEquiv_inverse_map, HomotopyCategory.isZero_quotient_obj_iff, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_apply, CategoryTheory.Oplax.LaxTrans.naturality_naturality_assoc, CategoryTheory.CategoryOfElements.map_map_coe, SemiNormedGrp.hom_sub, CategoryTheory.Linear.comp_apply, CategoryTheory.ShortComplex.HasLeftHomology.of_zeros, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.DifferentialObject.d_squared_apply, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.StrictPseudofunctor.id_mapComp_hom, AlgebraicGeometry.Spec.map_injective, CategoryTheory.Presheaf.functorToRepresentables_map, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, CategoryTheory.Linear.smulOfRingMorphism_smul_eq', CategoryTheory.yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, ModuleCat.Iso.homCongr_eq_arrowCongr, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm_assoc, CategoryTheory.Subobject.factorThru_eq_zero, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, TopologicalSpace.OpenNhds.comp_apply, CategoryTheory.finrank_hom_simple_simple_eq_one_iff, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_μ, CategoryTheory.Limits.MulticospanIndex.multicospan_map, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Subgroupoid.full_arrow_eq_iff, CategoryTheory.ShortComplex.leftHomologyMap'_neg, CategoryTheory.Limits.opCompYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Cat.Hom₂.eqToHom_toNatTrans, CategoryTheory.prodFunctorToFunctorProd_map, CategoryTheory.Cat.Hom₂.id_app, CategoryTheory.Adjunction.comp_homEquiv, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.coyonedaEvaluation_map_down, CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap, FunctorToFintypeCat.naturality, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, HomologicalComplex.mapBifunctor₂₃.d₂_eq, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.prod_id_fst, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, CategoryTheory.SimplicialThickening.compFunctor_obj, CategoryTheory.Limits.prod.inl_snd, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f, CategoryTheory.WithTerminal.map₂_app, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_inv_as_app, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_obj, SimplexCategory.instFiniteHom, AlgebraicGeometry.Scheme.stalkMap_congr_assoc, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_as_app, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Limits.KernelFork.condition_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, CategoryTheory.Functor.FullyFaithful.homEquiv_apply, CategoryTheory.Preadditive.sub_comp_assoc, CategoryTheory.Limits.zero_of_source_iso_zero, CategoryTheory.preadditiveYonedaObj_obj_carrier, LightCondensed.finYoneda_map, CategoryTheory.Monad.algebraPreadditive_homGroup_sub_f, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_id, CategoryTheory.tensorRightHomEquiv_symm_naturality, AddCommGrpCat.hom_zero, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_π_apply, CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial_inv, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, CategoryTheory.ShortComplex.LeftHomologyData.f'_π_assoc, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Types.instReflectsLimitsOfSizeForgetTypeHom, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, CategoryTheory.Cat.Hom.isoMk_hom, CochainComplex.IsKProjective.homotopyZero_def, CategoryTheory.Bicategory.pentagon_hom_hom_inv_hom_hom_assoc, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, SSet.horn.yonedaEquiv_ι, CategoryTheory.Functor.toPseudoFunctor'_obj, AlgebraicGeometry.pointsPi_injective, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_naturality, HomologicalComplex.biprod_inl_snd_f_assoc, CategoryTheory.Join.isoMkFunctor_hom_app, CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂_homEquiv, CategoryTheory.conjugateEquiv_symm_comp_assoc, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_inv_τr, CategoryTheory.Subfunctor.ofSection_eq_range, Homotopy.nullHomotopicMap_f_eq_zero, SemimoduleCat.Iso.homCongr_eq_arrowCongr, TopologicalSpace.Opens.comp_apply, CategoryTheory.Localization.SmallHom.equiv_equiv_symm, CategoryTheory.Bicategory.LeftLift.w_assoc, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, HomologicalComplex₂.totalAux.d₂_eq, CategoryTheory.ShortComplex.cyclesMap_neg, CategoryTheory.Cat.Hom.toNatIso_hom, CategoryTheory.ShortComplex.toCycles_comp_leftHomologyπ_assoc, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CochainComplex.mappingCone.d_snd_v, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, CategoryTheory.Bicategory.whiskerRightIso_hom, CategoryTheory.Bicategory.associatorNatIsoLeft_inv_app, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, CategoryTheory.ForgetEnrichment.equivFunctor_map, TopologicalSpace.OpenNhds.val_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.Limits.IsColimit.existsUnique, CategoryTheory.Equalizer.firstObjEqFamily_inv, CategoryTheory.Limits.prod.inr_fst_assoc, SheafOfModules.unitHomEquiv_symm_comp, CategoryTheory.MonoidalPreadditive.whiskerLeft_add, CategoryTheory.yonedaEquiv_apply, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_hom, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp, CategoryTheory.Bicategory.rightUnitor_inv_naturality, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, CategoryTheory.sum.inlCompInrCompInverseAssociator_inv_app_down_down, CategoryTheory.Limits.biprod.inlCokernelCofork_π, CategoryTheory.ForgetEnrichment.equivInverse_map, HomologicalComplex₂.d_f_comp_d_f, CategoryTheory.Limits.kernelForkBiproductToSubtype_cone, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, CategoryTheory.MonoidalCategory.whiskerLeft_dite, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HomologicalComplex.add_f_apply, CategoryTheory.Functor.equivCatHom_symm_apply, CategoryTheory.CatEnriched.id_hComp_id, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_apply, CategoryTheory.InducedCategory.homEquiv_apply, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, CategoryTheory.Limits.KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Bicategory.Adjunction.homEquiv₁_apply, CategoryTheory.StrictPseudofunctorCore.map₂_associator, CategoryTheory.Bicategory.Prod.swap_map₂, AlgebraicGeometry.Scheme.Modules.Hom.zero_app, AlgebraicGeometry.tilde.map_sub, CategoryTheory.Limits.colimit.homIso_hom, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.LocallyDiscrete.comp_as, SemimoduleCat.hom_zsmul, CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, HomologicalComplex₂.d₁_eq_zero', Mathlib.Tactic.Bicategory.naturality_rightUnitor, CategoryTheory.Bicategory.Pith.whiskerRight_iso_inv, HomologicalComplex₂.D₁_D₁_assoc, TopologicalSpace.Opens.infLELeft_apply_mk, CategoryTheory.Cat.Hom₂.comp_app_assoc, CategoryTheory.Subgroupoid.le_iff, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.prod.rightUnitor_map, CategoryTheory.congrArg_cast_hom_right, CategoryTheory.Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.InjectiveResolution.of_def, FintypeCat.instFiniteHom, SemimoduleCat.hom_nsmul, ModuleCat.extendRestrictScalarsAdj_homEquiv_apply, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁, CategoryTheory.Coyoneda.objOpOp_inv_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, SheafOfModules.freeHomEquiv_freeMap, CategoryTheory.Functor.prod'_δ_snd, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom_assoc, CategoryTheory.Iso.homCongr_trans, CategoryTheory.Bicategory.rightUnitor_inv_congr, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.GradedObject.zero_apply, CategoryTheory.IsPushout.zero_top, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.Pseudofunctor.map₂_left_unitor, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Bicategory.unitors_inv_equal, CategoryTheory.Bicategory.Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Bicategory.Pith.leftUnitor_inv_iso_hom, CategoryTheory.nonempty_hom_of_preconnected_groupoid, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CategoryTheory.Bicategory.leftZigzagIso_symm, CategoryTheory.ShortComplex.homologyMap'_zero, CategoryTheory.CommSq.instHasLift, CategoryTheory.Preadditive.IsIso.comp_right_eq_zero, CategoryTheory.StrictPseudofunctor.mk''_mapId, CategoryTheory.Bicategory.associator_inv_naturality_middle, CategoryTheory.Limits.Sigma.ι_π_assoc, CategoryTheory.Bicategory.associator_naturality_right_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Presheaf.freeYonedaHomEquiv_comp, CategoryTheory.Bicategory.hom_inv_whiskerRight_whiskerRight_assoc, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_of_mono₂, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_isIso, CategoryTheory.Groupoid.vertexGroup.inv_eq_inv, CategoryTheory.Bicategory.prod_id_fst, CategoryTheory.Bicategory.triangle_assoc_comp_left, CategoryTheory.Limits.IsColimit.homIso_hom, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Limits.kernel.condition_apply, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.Limits.equalizer_as_kernel, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃_assoc, CategoryTheory.WideSubcategory.id_def, HomologicalComplex.mapBifunctor₂₃.d₃_eq, CategoryTheory.Bicategory.associator_inv_naturality_right, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_symm_apply, CategoryTheory.GrpObj.comp_zpow, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, HomologicalComplex.extend.d_none_eq_zero', CategoryTheory.ShortComplex.HomologyMapData.add_left, groupCohomology.congr, CategoryTheory.Functor.IsStronglyCocartesian.universal_property', CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_hom, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃, HomologicalComplex₂.D₁_D₁, PresheafOfModules.freeYonedaEquiv_symm_app, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.Limits.biproduct.matrixEquiv_symm_apply, CategoryTheory.zero_map, CategoryTheory.Sheaf.isLocallySurjective_iff_epi, CategoryTheory.InjectiveResolution.complex_d_comp, CategoryTheory.leftDistributor_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_hom, CategoryTheory.FreeBicategory.mk_right_unitor_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, CategoryTheory.Limits.PreservesCokernel.of_iso_comparison, CategoryTheory.Bicategory.whiskerLeft_comp, HomologicalComplex.single_obj_d, CategoryTheory.CategoryOfElements.homMk_coe, CategoryTheory.tensorLeftHomEquiv_naturality, HomologicalComplex₂.D₂_D₁_assoc, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.FinCategory.categoryAsType_comp, CategoryTheory.eqToHom_heq_id_cod, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, CategoryTheory.Pseudofunctor.ObjectProperty.ι_app_toFunctor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Bicategory.conjugateEquiv_symm_id, CategoryTheory.Discrete.sumEquiv_inverse_map, CategoryTheory.ShortComplex.ShortExact.comp_δ, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv, CategoryTheory.Limits.kernelBiprodFstIso_hom, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Bicategory.conjugateEquiv_apply, CategoryTheory.Bicategory.prod_whiskerRight_fst, CategoryTheory.Limits.monoFactorisationZero_e, CategoryTheory.Functor.FullyFaithful.map_bijective, CategoryTheory.Adjunction.eq_homEquiv_apply, CategoryTheory.Pseudofunctor.DescentData.comp_hom, CategoryTheory.Bicategory.whiskerRight_comp_symm, CategoryTheory.ThinSkeleton.fromThinSkeleton_map, CategoryTheory.Endofunctor.Algebra.ext_iff, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_inv_τl, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, SimplicialObject.Splitting.cofan_inj_eq, CategoryTheory.Bicategory.Pith.comp₂_iso_hom_assoc, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.MonObj.ofRepresentableBy_one, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, starEquivCostar_apply_fst, CategoryTheory.ShortComplex.cyclesMap_sub, CategoryTheory.IsPullback.inr_fst, HomologicalComplex₂.D₂_D₂, CategoryTheory.Cat.leftUnitor_hom_app, CategoryTheory.Functor.curry₃_obj_obj_map_app, CategoryTheory.Bicategory.associator_eqToHom_hom_assoc, CategoryTheory.LocallyDiscrete.subsingleton2Hom, CategoryTheory.ShortComplex.Homotopy.g_h₃_assoc, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.FinCategory.asTypeToObjAsType_map, CategoryTheory.Bicategory.whiskerRight_id, Homotopy.prevD_succ_cochainComplex, HomologicalComplex.d_toCycles_assoc, CategoryTheory.kernel_zero_of_nonzero_from_simple, ContinuousMap.Homotopy.heq_path_of_eq_image, CategoryTheory.ShortComplex.Splitting.id, CochainComplex.ι_mapBifunctorShift₂Iso_hom_f_assoc, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.Iso.homFromEquiv_symm_apply, CategoryTheory.OplaxFunctor.map₂_leftUnitor_app, CategoryTheory.MonObj.comp_mul_assoc, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_apply, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans, HomologicalComplex.xPrevIsoSelf_comp_dTo, CategoryTheory.uliftCoyonedaEquiv_uliftCoyoneda_map, SheafOfModules.unitHomEquiv_symm_freeHomEquiv_apply, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Functor.RepresentableBy.coyoneda_homEquiv, CategoryTheory.TwoSquare.equivNatTrans_apply, CategoryTheory.ShortComplex.Homotopy.add_h₁, CochainComplex.HomComplex.Cochain.toSingleMk_add, CategoryTheory.coyonedaEquiv_comp, CategoryTheory.uliftYonedaEquiv_symm_apply_app, groupHomology.d₃₂_comp_d₂₁_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, CategoryTheory.Abelian.Ext.mk₀_neg, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂, CategoryTheory.Limits.isoZeroOfEpiZero_hom, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.colimitYonedaHomIsoLimit'_π_apply, CategoryTheory.WithInitial.liftFromUnderComp_inv_app, CategoryTheory.conjugateEquiv_symm_apply_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_hom_app_unmop_app, CategoryTheory.Limits.WalkingParallelPair.inclusionWalkingReflexivePair_map, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality, FGModuleCat.instFiniteHomModuleCatObjIsFG, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_app, CategoryTheory.MonoidalPreadditive.add_whiskerRight, CategoryTheory.LaxFunctor.id_mapId, AlgebraicGeometry.SpecToEquivOfLocalRing_apply_snd_coe, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagram_map, CategoryTheory.nerve.homEquiv_apply, Rep.homEquiv_apply_hom, CategoryTheory.isIso_iff_coyoneda_map_bijective, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π_assoc, CategoryTheory.Limits.Types.binaryCoproductCocone_ι_app, CategoryTheory.conjugateEquiv_apply_app, CategoryTheory.StrictPseudofunctor.id_obj, CategoryTheory.Limits.biproductBiproductIso_hom, CochainComplex.HomComplex.δ_v, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, CategoryTheory.Groupoid.isThin_iff, CategoryTheory.Limits.kernelBiproductπIso_hom, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, CategoryTheory.Abelian.tfae_epi, CategoryTheory.Oplax.StrongTrans.homCategory_id_as_app, CategoryTheory.Limits.compYonedaSectionsEquiv_apply_app, CategoryTheory.Idempotents.add_def, HomologicalComplex.d_comp_d_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, CategoryTheory.MonoidalOpposite.unmopEquiv_inverse_map_unmop, CategoryTheory.ShortComplex.HomologyMapData.neg_left, HomologicalComplex₂.ιTotal_totalFlipIso_f_inv_assoc, AlgebraicGeometry.AffineSpace.homOverEquiv_symm_apply_coe, CategoryTheory.Limits.BinaryBicone.sndKernelFork_ι, CategoryTheory.Bicategory.InducedBicategory.eqToHom_hom, CochainComplex.fromSingle₀Equiv_apply_coe, CategoryTheory.Functor.FullyFaithful.nonempty_iff_map_bijective, SimplexCategory.σ_injective, CategoryTheory.CategoryOfElements.to_comma_map_right, CategoryTheory.Pseudofunctor.Grothendieck.ext_iff, CategoryTheory.Functor.prod'_ε_fst, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, CategoryTheory.Functor.imageSieve_eq_imageSieve, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.Subgroupoid.IsWide.eqToHom_mem, HomologicalComplex.dgoToHomologicalComplex_obj_d, CategoryTheory.Bicategory.lanLiftUnit_desc_assoc, CategoryTheory.Localization.liftNatTrans_zero, CategoryTheory.Limits.BinaryFan.IsLimit.lift'_coe, CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, CategoryTheory.Cat.Hom.isoMk_inv, CategoryTheory.ShortComplex.Homotopy.smul_h₂, CategoryTheory.Bicategory.whiskerLeft_hom_inv, HomotopyCategory.quotient_map_eq_zero_iff, CategoryTheory.Abelian.Pseudoelement.zero_eq_zero', CategoryTheory.Lax.LaxTrans.id_app, CategoryTheory.instSmallHomOfLocallySmall, CategoryTheory.Subobject.factors_add, CategoryTheory.StrictlyUnitaryLaxFunctor.id_obj, CochainComplex.HomComplex.Cochain.neg_v, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CochainComplex.HomComplex.Cochain.sub_v, CategoryTheory.Linear.units_smul_comp, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.f', CategoryTheory.Bicategory.mateEquiv_id_comp_right, CategoryTheory.Adjunction.conjugateEquiv_leftAdjointCompIso_inv, CategoryTheory.Linear.leftComp_apply, CategoryTheory.Bicategory.leftUnitor_comp_inv, CochainComplex.mappingCone.liftCochain_v_descCochain_v, CategoryTheory.Functor.Linear.map_smul, Homotopy.nullHomotopicMap'_f_eq_zero, CategoryTheory.Presheaf.restrictedULiftYoneda_obj_map, CategoryTheory.Pseudofunctor.mapComp_id_left, CategoryTheory.Iso.unop2_inv, CategoryTheory.Limits.IsBilimit.total, CategoryTheory.Sieve.mem_ofObjects_iff, CategoryTheory.SemiadditiveOfBinaryBiproducts.comp_add, SheafOfModules.GeneratingSections.epi, CategoryTheory.Bicategory.postcomp_obj, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CategoryTheory.Limits.FormalCoproduct.Hom.fromIncl_asSigma, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φH, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Comma.opFunctor_map, HomologicalComplex₂.d₂_eq_zero, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_whisker_right, HomologicalComplex.mapBifunctorMapHomotopy.comm₁, CategoryTheory.StrictPseudofunctor.comp_mapComp_hom, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf', CategoryTheory.Biprod.unipotentLower_inv, Action.smul_hom, CategoryTheory.ShortComplex.cyclesMap'_sub, CategoryTheory.Bicategory.leftZigzagIso_hom, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, CategoryTheory.ShortComplex.homologyMap'_sub, CategoryTheory.Sieve.equalizer_apply, CategoryTheory.ShortComplex.Splitting.rightHomologyData_ι, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inl, CategoryTheory.Equalizer.firstObjEqFamily_hom, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range', CategoryTheory.Functor.toOplaxFunctor'_obj, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.ShortComplex.hasHomology_of_hasCokernel, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, Bicategory.Opposite.bicategory_associator_hom_unop2, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso_hom, CategoryTheory.StrictPseudofunctor.comp_mapId_hom, CategoryTheory.Idempotents.Karoubi.hom_eq_zero_iff, CategoryTheory.Limits.biprod.inr_fst, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, CategoryTheory.ShortComplex.Homotopy.sub_h₁, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Limits.IsBilimit.binary_total, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_symm_apply_φ, CochainComplex.mappingCone.inr_triangleδ, Bicategory.Opposite.unop2_id_bop, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, CategoryTheory.Bicategory.LeftExtension.ofCompId_left_as, CategoryTheory.Oplax.OplaxTrans.associator_hom_as_app, CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal_inv, MonCat.oneHom_apply, CategoryTheory.Idempotents.Karoubi.inclusionHom_apply, CategoryTheory.End.smul_left, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom, CategoryTheory.Preadditive.isSeparator_iff, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, HomologicalComplex.fromOpcycles_d_assoc, CategoryTheory.Pseudofunctor.toOplax_mapComp, Bicategory.Opposite.unopFunctor_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, CategoryTheory.Functor.FullyFaithful.homNatIso_inv_app_down, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.BicategoricalCoherence.tensorRight_iso, CategoryTheory.IsPullback.zero_top, CategoryTheory.Bicategory.inv_hom_whiskerRight_whiskerRight, CategoryTheory.Functor.IsStronglyCartesian.map_self, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃_assoc, CategoryTheory.isPullback_of_cofan_isVanKampen, CategoryTheory.Functor.CorepresentableBy.ofIsoObj_homEquiv, CategoryTheory.Bicategory.Prod.sectR_mapComp_inv, CategoryTheory.Bicategory.Prod.fst_mapComp_hom, CategoryTheory.MonoidalCategory.prodMonoidal_whiskerRight, SemimoduleCat.ofHom₂_hom_apply_hom, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality', CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_hom_inv_assoc, CategoryTheory.HomOrthogonal.matrixDecomposition_id, CochainComplex.mappingCone.id_X, CategoryTheory.Functor.Full.map_surjective, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.uliftCoyonedaEquiv_symm_apply_app, CategoryTheory.Bicategory.id_whiskerLeft_symm, CategoryTheory.Pseudofunctor.mapComp'_naturality_1, CategoryTheory.Functor.representableByUliftFunctorEquiv_symm_apply_homEquiv, CommRingCat.HomTopology.continuous_precomp, Hom.op_inj, CategoryTheory.ShortComplex.Homotopy.refl_h₃, CochainComplex.HomComplex.Cochain.single_zero, CategoryTheory.ShortComplex.homologyMap'_add, CategoryTheory.actionAsFunctor_map, CategoryTheory.ShortComplex.SnakeInput.δ_L₃_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f, AddCommGrpCat.asHom_injective, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.Limits.coker.condition_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app, CategoryTheory.Preadditive.nsmul_comp, SimplicialObject.Splitting.IndexSet.eqId_iff_len_eq, CategoryTheory.Localization.Preadditive.add'_map, SimplicialObject.Splitting.IndexSet.ext', CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_of, CategoryTheory.Limits.BinaryBicone.inl_snd_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Bicategory.LeftLift.IsKan.fac_assoc, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr, CategoryTheory.linearYoneda_obj_obj_carrier, CategoryTheory.Preadditive.isSeparating_iff, CategoryTheory.Pretriangulated.Triangle.smul_hom₂, CategoryTheory.Limits.Cotrident.IsColimit.homIso_natural, CategoryTheory.Bicategory.postcomposing_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_inv, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.Bicategory.Adj.rightUnitor_inv_τl, CategoryTheory.Coyoneda.objOpOp_hom_app, CategoryTheory.Bicategory.Adj.Hom₂.conjugateEquiv_symm_τr, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, CategoryTheory.ShortComplex.iCycles_g, CategoryTheory.FreeBicategory.mk_vcomp, CategoryTheory.LaxFunctor.PseudoCore.mapCompIso_inv, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.nerve.homEquiv_edgeMk, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, AlgebraicGeometry.pointEquivClosedPoint_apply_coe, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapId, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, ModuleCat.homLinearEquiv_symm_apply, HomologicalComplex.truncGE'.d_comp_d, ModuleCat.hom_smul, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Limits.cokernel.π_zero_isIso, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.Pseudofunctor.map₂_associator_app, CategoryTheory.Cat.rightUnitor_hom_toNatTrans, CategoryTheory.Functor.homObjEquiv_symm_apply_app, CategoryTheory.Adjunction.mkOfHomEquiv_counit_app, CategoryTheory.Bicategory.Prod.snd_map₂, Path.hom_heq_of_cons_eq_cons, CategoryTheory.Functor.map_inv', Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.Preadditive.cokernelCoforkOfCofork_ofπ, CategoryTheory.Lax.OplaxTrans.naturality_comp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, HomologicalComplex.extend.d_none_eq_zero, CochainComplex.HomComplex.CohomologyClass.toSmallShiftedHom_mk, SemimoduleCat.homLinearEquiv_apply, CategoryTheory.Bicategory.leftUnitor_inv_whiskerRight_assoc, CategoryTheory.Functor.RepresentableBy.comp_homEquiv_symm, CategoryTheory.Bicategory.whiskerRight_comp_symm_assoc, CategoryTheory.Functor.equivCatHom_apply, HomologicalComplex.cylinder.πCompι₀Homotopy.nullHomotopicMap_eq, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.ShortComplex.Homotopy.neg_h₁, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, HomologicalComplex.mapBifunctor₂₃.ιOrZero_eq_zero, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality_assoc, CochainComplex.ConnectData.d_comp_d, CategoryTheory.NatTrans.app_nsmul, HomologicalComplex.sub_f_apply, CochainComplex.mappingCone.d_snd_v'_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapId, CategoryTheory.whiskerLeft_def, CategoryTheory.NatTrans.prod_app_fst, HomologicalComplex.homotopyCofiber.descSigma_ext_iff, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_inv, AlgebraicGeometry.IsLocalIso.le_of_isZariskiLocalAtSource, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom, CategoryTheory.Bicategory.Adj.rightUnitor_hom_τr, CategoryTheory.Iso.eHomCongr_comp_assoc, CategoryTheory.Adjunction.homEquiv_unit, Hom.mop_inj, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Join.opEquiv_inverse_map_inclRight_op, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, HomologicalComplex.d_pOpcycles, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_inv_iso_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp_id_right, CategoryTheory.Preadditive.comp_neg, CategoryTheory.conjugateEquiv_leftUnitor_hom, CategoryTheory.Sum.functorEquiv_inverse_map, CategoryTheory.Limits.isIsoZero_iff_source_target_isZero, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Bicategory.comp_whiskerRight, CategoryTheory.BicategoricalCoherence.left_iso, CategoryTheory.Limits.Pi.ι_π_of_ne, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CategoryTheory.ShortComplex.add_τ₃, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, CategoryTheory.Limits.limitCompCoyonedaIsoCone_hom_app, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc, Bicategory.Opposite.bicategory_leftUnitor_hom_unop2, CategoryTheory.uliftYonedaEquiv_apply, CategoryTheory.Limits.WidePullbackShape.mkCone_π_app, CategoryTheory.Iso.homCongr_comp, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Bicategory.comp_whiskerLeft_symm, CategoryTheory.Bicategory.inv_whiskerRight, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_inv, CategoryTheory.Bicategory.Pith.id₂_iso_inv, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.ShortComplex.Homotopy.refl_h₂, CategoryTheory.Arrow.equivSigma_apply_snd_snd, CategoryTheory.bijection_natural, HomologicalComplex.fromOpcycles_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, ChainComplex.toSingle₀Equiv_apply_coe, HomologicalComplex.homologyι_opcyclesToCycles_assoc, CategoryTheory.Limits.Fork.IsLimit.existsUnique, CategoryTheory.Functor.FullyFaithful.homEquiv_symm_apply, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, CategoryTheory.Monad.algebraPreadditive_homGroup_add_f, PresheafOfModules.zsmul_app, Condensed.finYoneda_map, FDRep.instFiniteDimensionalHom, CategoryTheory.NormalEpi.w, CategoryTheory.Limits.coequalizer_as_cokernel, CategoryTheory.Localization.small_of_hasSmallLocalizedHom, CategoryTheory.CartesianClosed.homEquiv_apply_eq, CategoryTheory.Classifier.SubobjectRepresentableBy.homEquiv_eq, SimplexCategory.instSubsingletonHomMkOfNatNat, CategoryTheory.Bicategory.mateEquiv_symm_apply', SSet.Subcomplex.instSubsingletonHomToSSetBot, CategoryTheory.Oplax.LaxTrans.naturality_naturality, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id, CategoryTheory.Localization.homEquiv_eq, CategoryTheory.Oplax.StrongTrans.naturality_comp, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, CategoryTheory.Grp.Hom.hom_hom_div, CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal_hom, CategoryTheory.OplaxFunctor.map₂_leftUnitor_assoc, CategoryTheory.Functor.toPseudoFunctor'_map, CategoryTheory.Bicategory.conjugateEquiv_id_comp_right_apply, CategoryTheory.Oplax.OplaxTrans.associator_inv_as_app, CategoryTheory.IsPushout.inl_snd', CategoryTheory.PreGaloisCategory.toAut_surjective_isGalois_finite_family, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality', CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_δ_assoc, CategoryTheory.Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃, CategoryTheory.Bicategory.Adjunction.homEquiv₂_apply, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.Limits.Pi.ι_π, CategoryTheory.PreGaloisCategory.toAut_hom_app_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc, SimplicialObject.Splitting.IndexSet.mk_snd_coe, CategoryTheory.Congruence.equivalence, CategoryTheory.Preadditive.smul_iso_hom, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_right, CategoryTheory.Adjunction.compPreadditiveYonedaIso_inv_app_app_apply, CategoryTheory.Bicategory.Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, FintypeCat.toProfinite_map_hom_hom_apply, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, CategoryTheory.BicartesianSq.of_has_biproduct₂, Rep.coindVEquiv_symm_apply_coe, CategoryTheory.whiskerRight_def, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_left_unitor, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom, HomologicalComplex₂.d_f_comp_d_f_assoc, CategoryTheory.Pseudofunctor.toLax_mapComp, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, HomologicalComplex.homotopyCofiber.inlX_sndX_assoc, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Types.instFullForgetTypeHom, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.CommSq.shortComplex_f, CategoryTheory.CatEnriched.id_hComp_heq, CategoryTheory.MonObj.comp_one, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Limits.FintypeCat.productEquiv_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left, CategoryTheory.Discrete.instSubsingletonDiscreteHom, CategoryTheory.uliftYonedaEquiv_symm_map, CategoryTheory.Functor.prod_ε_snd, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π, HomologicalComplex.homologyι_comp_fromOpcycles, CategoryTheory.Functor.cones_obj, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.NonPreadditiveAbelian.sub_sub_sub, CategoryTheory.Lax.LaxTrans.naturality_comp, CategoryTheory.Presieve.preZeroHypercover_I₀, CondensedMod.isDiscrete_iff_isDiscrete_forget, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, FintypeCat.comp_apply, CategoryTheory.Limits.zero_of_target_iso_zero', CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Limits.biprod.fstKernelFork_ι, CategoryTheory.Limits.biproduct.matrix_desc_assoc, FintypeCat.uSwitchEquiv_naturality, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, AlgebraicTopology.DoldKan.QInfty_f_0, HomologicalComplex.homologyMap_neg, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, CategoryTheory.Oplax.StrongTrans.id_naturality_inv, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.InjectiveResolution.ι_f_succ, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Adjunction.compUliftCoyonedaIso_inv_app_app_down, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.MonObj.one_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc, FintypeCat.equivEquivIso_symm_apply_symm_apply, CategoryTheory.presheafHom_obj, CategoryTheory.FinCategory.categoryAsType_id, CategoryTheory.PreGaloisCategory.evaluation_injective_of_isConnected, prevD_eq_toPrev_dTo, CategoryTheory.Limits.IsColimit.homEquiv_apply, CategoryTheory.Limits.comp_zero, CategoryTheory.Limits.monoFactorisationZero_m, CategoryTheory.Preadditive.neg_iso_hom, CategoryTheory.Groupoid.vertexGroup_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, CategoryTheory.Oplax.LaxTrans.id_app, CategoryTheory.NatTrans.app_add, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_as_app, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, symmetrify_reverse, CategoryTheory.Functor.whiskerLeft_obj_map_bijective_of_isCoverDense, CategoryTheory.Pseudofunctor.map₂_right_unitor_assoc, CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.ext_iff, CategoryTheory.GrpObj.inv_comp_assoc, CategoryTheory.Bicategory.Prod.sectL_mapComp_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, CategoryTheory.Limits.preservesKernel_zero, CategoryTheory.Abelian.Ext.mk₀_smul, CategoryTheory.prod_id', CategoryTheory.Bicategory.associator_inv_naturality_left, CategoryTheory.Functor.map_zero, CategoryTheory.opEquiv_apply, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, SemiNormedGrp.zero_apply, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Functor.prod_η_snd, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero_assoc, AlgebraicTopology.AlternatingFaceMapComplex.d_squared, CategoryTheory.Limits.inr_pushoutZeroZeroIso_hom, CategoryTheory.Bicategory.leftUnitor_inv_naturality, CategoryTheory.Quiv.homEquivOfIso_apply, CategoryTheory.ShortComplex.opcyclesMap_add, CategoryTheory.WithTerminal.lift_map, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_inv_hom, CategoryTheory.Limits.biprod.decomp_hom_to, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, CategoryTheory.Biprod.inr_ofComponents, CategoryTheory.Equivalence.inverseFunctor_map, TopCat.presheafToTop_obj, CategoryTheory.Bicategory.unitors_equal, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Biprod.ofComponents_snd, CategoryTheory.Arrow.mk_injective, CategoryTheory.Cat.associator_inv_app, CategoryTheory.Bicategory.associator_naturality_right, CategoryTheory.Bicategory.whiskerRightIso_inv, CategoryTheory.NonPreadditiveAbelian.sub_add, CategoryTheory.Bicategory.precomposing_map_app, FundamentalGroupoid.instSubsingletonHomPUnit, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Limits.biproduct.lift_matrix_assoc, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, CategoryTheory.Bicategory.Prod.sectL_obj, CategoryTheory.Limits.biproduct.lift_desc_assoc, CategoryTheory.SingleObj.inv_as_inv, HomologicalComplex.mapBifunctorMapHomotopy.zero₁, CategoryTheory.Subgroupoid.coe_comp_coe, CategoryTheory.Preadditive.epi_iff_cancel_zero, Homotopy.dNext_zero_chainComplex, HomologicalComplex.mapBifunctor₂₃.d₃_eq_zero, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.MonoidalOpposite.tensorIso_hom_app_unmop, CategoryTheory.Sheaf.ΓHomEquiv_naturality_left, CategoryTheory.Limits.biproduct.matrixEquiv_apply, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d_assoc, FintypeCat.hom_ext_iff, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, CategoryTheory.Cat.rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.DifferentialObject.ext_iff, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.Linear.smulOfRingMorphism_smul_eq, CategoryTheory.Preadditive.comp_sum_assoc, HomologicalComplex₂.d₁_eq, CategoryTheory.Oplax.LaxTrans.id_naturality, CategoryTheory.Comon.ComonToMonOpOp_map, MonCat.hom_one, CategoryTheory.Pseudofunctor.ObjectProperty.ι_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Limits.kernelBiprodFstIso_inv, CategoryTheory.ShortComplex.Homotopy.smul_h₀, CochainComplex.HomComplex.Cochain.ofHom_neg, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Pseudofunctor.mapComp_id_right_hom, CategoryTheory.yonedaMonObj_map, Homotopy.prevD_chainComplex, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_of_mono₃, CategoryTheory.Bicategory.conjugateEquiv_symm_of_iso, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.naturality_assoc, CategoryTheory.ShortComplex.Homotopy.smul_h₃, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Subgroupoid.mem_discrete_iff, CategoryTheory.Subfunctor.ofSection_obj, CategoryTheory.uliftYonedaEquiv_naturality, CategoryTheory.ShortComplex.cyclesMap_smul, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_as_app, CategoryTheory.Functor.curry₃_obj_map_app_app, CategoryTheory.Grothendieck.map_map, CategoryTheory.Lax.LaxTrans.vComp_naturality_naturality, CategoryTheory.Bicategory.prod_whiskerRight_snd, CategoryTheory.CatEnrichedOrdinary.hComp_id, CategoryTheory.CatCenter.app_add, CategoryTheory.Limits.CokernelCofork.condition, CategoryTheory.conjugateEquiv_counit_symm, CochainComplex.HomComplex.Cochain.zero_v, SimplicialObject.Splitting.IndexSet.eqId_iff_mono, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_map₂, CategoryTheory.Limits.cokernel.condition, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_hom_τr, CategoryTheory.StrictPseudofunctor.comp_mapId_inv, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr_assoc, TopCat.Sheaf.extend_hom_app, CategoryTheory.Functor.map_add, CategoryTheory.OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, CategoryTheory.CatEnrichedOrdinary.hComp_comp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.conj_eqToHom_iff_heq', CategoryTheory.NonPreadditiveAbelian.sub_zero, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.g, CategoryTheory.Bicategory.Adj.id_τl, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inr, CategoryTheory.Bicategory.Adj.comp_τl, CategoryTheory.ShortComplex.leftHomologyMap_add, ModuleCat.homAddEquiv_symm_apply_hom, CategoryTheory.IsPushout.zero_bot, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inr, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, CategoryTheory.Preadditive.smul_iso_inv, CategoryTheory.IsPushout.zero_left, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.PrelaxFunctor.mkOfHomFunctors_toPrelaxFunctorStruct, CategoryTheory.Bicategory.Comonad.comul_assoc_flip_assoc, CategoryTheory.Limits.Fork.IsLimit.homIso_symm_apply, HomotopicalAlgebra.RightHomotopyClass.mk_surjective, HomologicalComplex.mapBifunctor₁₂.d₂_eq_zero, CategoryTheory.Biprod.unipotentUpper_hom, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, Prefunctor.star_fst, CategoryTheory.Functor.homEquivOfIsLeftKanExtension_symm_apply, CategoryTheory.OplaxFunctor.map₂_associator_app_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapComp, CategoryTheory.Monad.adj_counit, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CommRingCat.HomTopology.precompHomeomorph_apply, CategoryTheory.ShortComplex.Homotopy.ofEq_h₂, FintypeCat.id_apply, CategoryTheory.Presieve.preZeroHypercover_X, CategoryTheory.LaxFunctor.map₂_associator_app_assoc, CategoryTheory.Adjunction.CoreHomEquivUnitCounit.homEquiv_unit, CategoryTheory.SingleObj.comp_as_mul, CategoryTheory.Bicategory.conjugateEquiv_comp_id_right_apply, CategoryTheory.Subobject.bot_factors_iff_zero, CategoryTheory.Functor.uncurry_map_app, CategoryTheory.MonoidalPreadditive.whiskerLeft_zero, CategoryTheory.MonoidalOpposite.mopMopEquivalence_inverse_map_unmop_unmop, CategoryTheory.PreGaloisCategory.functorToContAction_map, CategoryTheory.ActionCategory.uncurry_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans, CategoryTheory.Lax.LaxTrans.id_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, HomologicalComplex.iCycles_d, SSet.hoFunctor.unitHomEquiv_eq, HomologicalComplex.mapBifunctor₁₂.ιOrZero_eq_zero, CategoryTheory.ShortComplex.Homotopy.comm₃, CategoryTheory.NonPreadditiveAbelian.sub_comp, CategoryTheory.Bicategory.whiskerLeft_rightUnitor_assoc, prevD_nat, CategoryTheory.Limits.pullbackZeroZeroIso_inv_fst, CategoryTheory.Bicategory.leftUnitor_inv_whiskerRight, CategoryTheory.InjectiveResolution.extMk_zero, CategoryTheory.Idempotents.idem_of_id_sub_idem, ChainComplex.mk_congr_succ_X₃, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.ShortComplex.homologyMap'_neg, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_associator, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_index, CategoryTheory.Functor.map_zsmul, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂_assoc, CategoryTheory.CostructuredArrow.prodInverse_obj, CategoryTheory.nerve.homEquiv_comp, CategoryTheory.Limits.pullbackZeroZeroIso_hom_snd, FGModuleCat.instFiniteHom, CategoryTheory.Pretriangulated.Triangle.rotate_mor₃, groupCohomology.cochainsMap_zero, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_obj, CategoryTheory.ShortComplex.homologyι_comp_fromOpcycles_assoc, HomologicalComplex.dTo_comp_dFrom, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, CategoryTheory.FreeBicategory.mk_id, CategoryTheory.nerve.mk₁_homEquiv_apply, CategoryTheory.ShortComplex.LeftHomologyMapData.neg_φH, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.Preadditive.neg_comp_neg_assoc, CategoryTheory.Preadditive.kernelForkOfFork_ofι, CategoryTheory.Functor.toOplaxFunctor_obj, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_left, CategoryTheory.Bicategory.instIsIsoHomLeftZigzagHom, CategoryTheory.Limits.colimitYonedaHomIsoLimit_π_apply, CategoryTheory.Limits.FintypeCat.productEquiv_symm_comp_π_apply, CategoryTheory.Bicategory.Prod.fst_map₂, HomologicalComplex₂.D₁_shape, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, CategoryTheory.heq_comp_eqToHom_iff, CategoryTheory.WithTerminal.liftToTerminal_map, CategoryTheory.Precoverage.mem_finite_iff, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app, CategoryTheory.Bicategory.Equivalence.right_triangle, CategoryTheory.Functor.toPseudoFunctor_mapComp, CategoryTheory.prodFunctor_map, CategoryTheory.Preadditive.neg_comp_neg, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_obj, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_app, CategoryTheory.Bicategory.InducedBicategory.forget_map, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', CategoryTheory.Pretriangulated.Triangle.sub_hom₁, CategoryTheory.Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.Bicategory.associator_eqToHom_inv, CategoryTheory.Bicategory.Equivalence.left_triangle, CategoryTheory.Localization.Preadditive.homEquiv_apply, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, AddCommGrpCat.homAddEquiv_symm_apply_hom, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app_assoc, CategoryTheory.Arrow.equivSigma_apply_fst, CategoryTheory.InducedCategory.homEquiv_symm_apply_hom, CategoryTheory.OplaxFunctor.mapId'_eq_mapId, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.Limits.cokernelBiprodInlIso_inv, CategoryTheory.DifferentialObject.d_squared, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one_assoc, AddCommGrpCat.hom_sub, AddGrpCat.zero_apply, CategoryTheory.Presieve.uncurry_singleton, CategoryTheory.Join.mapWhiskerRight_app, CategoryTheory.PrelaxFunctor.map₂_eqToHom, Mathlib.Tactic.Bicategory.naturality_associator, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom, CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors_map₂, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, CategoryTheory.Bicategory.LanLift.existsUnique, CategoryTheory.conjugateEquiv_symm_iso, CategoryTheory.ComposableArrows.IsComplex.zero_assoc, CategoryTheory.ObjectProperty.monoModSerre_zero_iff, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φH, CategoryTheory.Iso.op2_hom_unop2, CategoryTheory.Equivalence.symmEquivFunctor_map, CochainComplex.HomComplex.Cochain.fromSingleMk_add, CategoryTheory.Limits.Cofork.IsColimit.homIso_apply_coe, CategoryTheory.finrank_endomorphism_eq_one, Bicategory.Opposite.bicategory_leftUnitor_inv_unop2, CategoryTheory.CatEnriched.hComp_id_heq, CategoryTheory.Bicategory.Prod.sectR_mapId_inv, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp, CategoryTheory.Limits.image.ι_zero, CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext, CategoryTheory.Limits.kernel.ι_of_mono, CategoryTheory.Limits.inl_of_isLimit, CategoryTheory.Pretriangulated.contractibleTriangle_mor₂, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app, CategoryTheory.Adjunction.conjugateEquiv_leftAdjointIdIso_hom, CategoryTheory.Monad.adj_unit, CategoryTheory.Subfunctor.ofSection_eq_range', CategoryTheory.MonObj.mul_comp, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq_zero, groupCohomology.map₁_one, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CategoryTheory.PrelaxFunctor.map₂_hom_inv, CategoryTheory.Limits.coneOfIsSplitMono_π_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf, CategoryTheory.Functor.partialRightAdjointHomEquiv_map, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapComp, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.linearYoneda_map_app, CategoryTheory.Join.isoMkFunctor_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_base, TopModuleCat.hom_add, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.Functor.CorepresentableBy.homEquiv_eq, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_fst_apply, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.ShortComplex.Splitting.g_s, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.Hom.mul_def, CochainComplex.IsKInjective.homotopyZero_def, CategoryTheory.ShortComplex.Homotopy.ofEq_h₀, CategoryTheory.ShortComplex.HomologyMapData.zero_left, CategoryTheory.Grp.Hom.hom_hom_inv, HomologicalComplex.opcyclesToCycles_homologyπ, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, CategoryTheory.MonoidalCategory.dite_whiskerRight, CommRingCat.HomTopology.isEmbedding_pushout, CategoryTheory.Presieve.preZeroHypercover_f, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_inv, CategoryTheory.Localization.SmallHom.equiv_mkInv, CategoryTheory.Bicategory.pentagon_inv_inv_hom_hom_inv, AlgebraicGeometry.IsLocalIso.le_of_isLocalAtSource, CategoryTheory.Subgroupoid.mem_map_iff, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, CategoryTheory.Adjunction.homAddEquiv_sub, CategoryTheory.tensorLeftHomEquiv_tensor, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_of_epi₁, CategoryTheory.Presheaf.restrictedULiftYoneda_map_app, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_id_as_app, SSet.Subcomplex.yonedaEquiv_coe, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, CategoryTheory.Limits.biprod.sndKernelFork_ι, ComplexShape.Embedding.AreComplementary.hom_ext, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Preadditive.forkOfKernelFork_pt, CategoryTheory.FreeBicategory.mk_left_unitor_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, SimplicialObject.Splitting.IndexSet.mk_fst, AddCommGrpCat.hom_nsmul, HomotopyCategory.quot_mk_eq_quotient_map, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.eqToHom_comp_heq_iff, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, HomologicalComplex.units_smul_f_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CategoryTheory.Limits.reflexivePair.compRightIso_hom_app, CategoryTheory.Preadditive.sum_comp, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_assoc, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, CategoryTheory.CatEnrichedOrdinary.Hom.mk_comp, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_apply_fst, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, CategoryTheory.Functor.partialLeftAdjointHomEquiv_map, CategoryTheory.Limits.ker.condition, HomologicalComplex.homotopyCofiber.inrX_fstX, CochainComplex.HomComplex.Cochain.leftUnshift_v, AlgebraicGeometry.Scheme.IsLocallyDirected.homOfLE_tAux, CategoryTheory.Limits.BinaryBicone.inr_fst_assoc, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three, DerivedCategory.HomologySequence.comp_δ_assoc, CategoryTheory.Comma.equivProd_inverse_map_left, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_inv, SheafOfModules.freeHomEquiv_symm_comp, CategoryTheory.WithTerminal.map_map, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_map, CategoryTheory.CosimplicialObject.cechConerveEquiv_symm_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality', CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, CategoryTheory.Limits.biprod.decomp_hom_from, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, CategoryTheory.Functor.map_smul, CategoryTheory.Iso.homCongr_refl, CategoryTheory.Bicategory.Prod.swap_map, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.InitiallySmall.exists_small_weakly_initial_set, CategoryTheory.Bicategory.Pith.rightUnitor_hom_iso, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, CochainComplex.ConnectData.map_f, CategoryTheory.Functor.Additive.map_add, CategoryTheory.NatTrans.toCatHom₂_id, CategoryTheory.PreGaloisCategory.toAut_surjective_isGalois, CategoryTheory.Bicategory.Comonad.counit_comul_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, CategoryTheory.Join.opEquiv_functor_map_op_edge, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁, Bicategory.Opposite.op2_rightUnitor_inv, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Pseudofunctor.id_mapId, CategoryTheory.yonedaMonObj_obj_coe, CategoryTheory.Functor.map_eq_zero_iff, CategoryTheory.Discrete.productEquiv_counitIso_hom_app, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, SemiNormedGrp.hom_add, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, CategoryTheory.Biprod.unipotentLower_hom, CategoryTheory.BicategoricalCoherence.right'_iso, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, CategoryTheory.Join.mapIsoWhiskerRight_hom_app, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, CategoryTheory.Limits.zero_of_to_zero, Action.FintypeCat.toEndHom_apply, CategoryTheory.Bicategory.pentagon_assoc, CategoryTheory.Limits.Fork.ofι_π_app, CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.yoneda_obj_obj, CategoryTheory.Join.opEquiv_functor_map_op_inclRight, CategoryTheory.uliftYonedaEquiv_comp, CategoryTheory.Limits.biprod.desc_eq, SSet.stdSimplex.face_obj, CategoryTheory.Bicategory.Adj.id_τr, CategoryTheory.Functor.sectionsEquivHom_naturality, Homotopy.nullHomotopicMap_f, CategoryTheory.Subgroupoid.IsWide.wide, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, CategoryTheory.Limits.snd_of_isColimit, CategoryTheory.Oplax.StrongTrans.Modification.id_app, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, CategoryTheory.Bicategory.prod_rightUnitor_inv_fst, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_of_epi₂, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, CategoryTheory.Subgroupoid.isThin_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_inv_app_unmop_app, CategoryTheory.Adjunction.restrictFullyFaithful_homEquiv_apply, CategoryTheory.Limits.biproduct.lift_desc, SSet.stdSimplex.map_apply, HomologicalComplex.d_toCycles, CategoryTheory.LaxFunctor.mapComp'_eq_mapComp, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, CochainComplex.HomComplex.Cochain.ofHom_sub, CategoryTheory.conjugateEquiv_whiskerRight, CategoryTheory.Oplax.LaxTrans.naturality_comp, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_hom_τl, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.bijection_symm_apply_id, CategoryTheory.MonoidalPreadditive.add_tensor, AlgebraicGeometry.ΓSpec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, TopModuleCat.hom_zsmul, CategoryTheory.ShortComplex.opcyclesMap_neg, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, CategoryTheory.Limits.id_zero, CategoryTheory.Free.single_comp_single, CategoryTheory.Functor.toPseudoFunctor_map, CategoryTheory.Limits.cokernelBiprodInrIso_inv, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂'_homEquiv, CategoryTheory.IsPushout.inr_fst, CategoryTheory.Pretriangulated.contractible_distinguished₂, Rep.resIndAdjunction_homEquiv_symm_apply, CategoryTheory.Functor.isRepresentedBy_iff, CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.Localization.homEquiv_comp, CategoryTheory.ShortComplex.Homotopy.symm_h₀, CategoryTheory.rightDistributor_inv, CategoryTheory.Bicategory.whiskerLeft_isIso, CategoryTheory.Enriched.FunctorCategory.homEquiv_comp, Action.hom_injective, CategoryTheory.ShortComplex.Homotopy.equivSubZero_symm_apply, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.Oplax.StrongTrans.isoMk_hom_as_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp, CategoryTheory.Functor.homologySequenceδ_comp_assoc, Action.nsmul_hom, HomologicalComplex.d_pOpcycles_assoc, CategoryTheory.Bicategory.conjugateIsoEquiv_apply_inv, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_leftAdd, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_functor_map, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, CategoryTheory.IsPullback.inl_snd, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁_assoc, CategoryTheory.PrelaxFunctor.map₂_inv_hom_isIso, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc, CategoryTheory.ProjectiveResolution.of_def, CommRingCat.HomTopology.instT2SpaceHomOfCarrier, CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, HomologicalComplex₂.totalAux.d₂_eq', CategoryTheory.IsCofiltered.inf_objs_exists, CategoryTheory.Bicategory.eqToHomTransIso_refl_right, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_π_apply, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_apply_homEquiv, TopologicalSpace.OpenNhds.id_apply, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_assoc, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, Homotopy.zero, Rep.coindMap'_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.Functor.map_sub, CategoryTheory.Localization.Construction.lift_map, CategoryTheory.ProjectiveResolution.π_f_succ, CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles_assoc, HomologicalComplex₂.totalAux.d₁_eq, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans, CategoryTheory.CatEnriched.hComp_assoc, CategoryTheory.yonedaEquiv_yoneda_map, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, Preorder.subsingleton_hom, CategoryTheory.Bicategory.pentagon_inv_inv_hom_inv_inv, CategoryTheory.PrelaxFunctor.map₂_inv_hom_isIso_assoc, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst_assoc, CategoryTheory.IsPushout.of_hasBinaryCoproduct, CategoryTheory.Idempotents.zero_def, CategoryTheory.Subgroupoid.IsNormal.generatedNormal_le, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Abelian.Ext.mk₀_add, CategoryTheory.IsPullback.of_hasBinaryProduct, CategoryTheory.Quotient.functor_homRel_eq_compClosure_eqvGen, CategoryTheory.Limits.imageSubobject_zero, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_inv, CategoryTheory.ShortComplex.rightHomologyι_descOpcycles_π_eq_zero_of_boundary, CategoryTheory.unit_conjugateEquiv_symm, CategoryTheory.CategoryOfElements.comp_val, HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary, CategoryTheory.CatEnrichedOrdinary.Hom.id_eq, Homotopy.extend.hom_eq_zero₁, Path.toList_chain_nonempty, CategoryTheory.PreGaloisCategory.evaluation_aut_bijective_of_isGalois, CategoryTheory.Limits.opCompYonedaSectionsEquiv_apply_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.Groupoid.vertexGroup_one, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.LaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, prevD_eq, CategoryTheory.WideSubcategory.comp_def, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, CategoryTheory.Preadditive.comp_neg_assoc, CategoryTheory.FreeBicategory.preinclusion_map₂, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_inv_iso_inv, HomologicalComplex.mapBifunctor.d₂_eq, CategoryTheory.Bicategory.prod_whiskerLeft_fst, CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_as_app, CommRingCat.HomTopology.precompHomeomorph_symm_apply, AlgebraicGeometry.Scheme.stalkMap_congr_hom_assoc, CategoryTheory.unit_conjugateEquiv, CategoryTheory.OplaxFunctor.map₂_associator_assoc, CategoryTheory.Bicategory.precomp_obj, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, AlgebraicTopology.AlternatingCofaceMapComplex.d_squared, CategoryTheory.Free.embedding_map, CategoryTheory.Limits.biprod.total, CategoryTheory.Limits.cokernel.π_of_zero, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_map_coe, Symmetrify.of_map, CategoryTheory.Pseudofunctor.map₂_whisker_left, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.uliftYoneda_obj_map, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.Quiv.adj_homEquiv, CategoryTheory.Triangulated.TStructure.zero, CategoryTheory.Groupoid.isoEquivHom_apply, CategoryTheory.Enriched.FunctorCategory.homEquiv_id, HomologicalComplex.ι_mapBifunctorFlipIso_inv_assoc, CategoryTheory.Groupoid.isoEquivHom_symm_apply_hom, HomologicalComplex.extend_single_d, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc, CategoryTheory.projective_iff_llp_epimorphisms_zero, CategoryTheory.ShortComplex.liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, HomologicalComplex.mapBifunctor.d₁_eq_zero, CategoryTheory.GrothendieckTopology.map_yonedaEquiv', CategoryTheory.Pseudofunctor.StrongTrans.isoMk_hom_as_app, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_φ, CategoryTheory.Bicategory.adjointifyCounit_left_triangle, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_id, CategoryTheory.PreGaloisCategory.instFiniteHomOfIsConnected, CategoryTheory.Localization.homEquiv_symm_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τl, CategoryTheory.rightUnitor_def, Rep.freeLiftLEquiv_apply, CategoryTheory.Functor.curry₃_obj_obj_obj_map, CategoryTheory.ShortComplex.rightHomologyMap'_add, CategoryTheory.Groupoid.invEquiv_apply, HomologicalComplex₂.d₁_eq_zero, CategoryTheory.Lax.StrongTrans.toLax_naturality, CategoryTheory.Functor.mapComposableArrowsObjMk₂Iso_hom_app, CommRingCat.HomTopology.isClosedEmbedding_hom, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, HomologicalComplex.zsmul_f_apply, groupCohomology.mapCocycles₁_one, CategoryTheory.ObjectProperty.epiModSerre_zero_iff, CategoryTheory.Subgroupoid.hom.faithful, SSet.Truncated.HomotopyCategory₂.homMk_surjective, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_symm_apply, CategoryTheory.unitCompPartialBijective_natural, CategoryTheory.SimplicialThickening.functor_map, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, CategoryTheory.WithTerminal.ofCommaMorphism_app, CochainComplex.singleFunctor_obj_d, CategoryTheory.uliftYoneda_obj_obj, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, CategoryTheory.Pseudofunctor.toOplax_mapId, CategoryTheory.dite_comp, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.ShortComplex.LeftHomologyData.f'_π, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_hom, CategoryTheory.FinCategory.objAsTypeToAsType_map, CategoryTheory.Subobject.mk_eq_bot_iff_zero, CategoryTheory.Localization.SmallHom.equiv_mk, CategoryTheory.eqToHom_comp_heq, CategoryTheory.Preadditive.instMonoNegHom, CategoryTheory.Bicategory.prod_associator_inv_fst, HomologicalComplex.homologyMap_add, CategoryTheory.Bicategory.whiskerLeft_rightUnitor_inv, CategoryTheory.PrelaxFunctor.map₂_hom_inv_assoc, Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal_hom, HomotopicalAlgebra.LeftHomotopyClass.mk_surjective, CategoryTheory.Pretriangulated.Triangle.neg_hom₁, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_eq_eqToHom, SheafOfModules.freeHomEquiv_comp_apply, ContinuousCohomology.MultiInd.d_comp_d_assoc, CategoryTheory.yonedaMon_map_app, SemiNormedGrp.hom_neg, CategoryTheory.shrinkYonedaEquiv_naturality, Hom.opEquiv_apply, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly_assoc, HomologicalComplex.extend_d_to_eq_zero, CategoryTheory.yonedaEquiv_naturality', CategoryTheory.Bicategory.InducedBicategory.bicategory_Hom, CategoryTheory.StrictlyUnitaryLaxFunctor.map_id, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality, Action.sub_hom, FintypeCat.toLightProfinite_map_hom_hom_apply, CategoryTheory.BicategoricalCoherence.tensorRight'_iso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CategoryTheory.Subgroupoid.mem_ker_iff, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_obj, CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, CategoryTheory.Bicategory.prod_Hom, CategoryTheory.Bicategory.Pith.whiskerRight_iso_hom, CategoryTheory.Functor.mapZeroObject_inv, CategoryTheory.Bicategory.comp_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv, CategoryTheory.Functor.cocones_obj, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero, CategoryTheory.Limits.compCoyonedaSectionsEquiv_symm_apply_coe, CategoryTheory.tensorHom_def, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Limits.coker.condition, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply', HomologicalComplex.nsmul_f_apply, CategoryTheory.Types.instIsEquivalenceForgetTypeHom, CategoryTheory.NatTrans.mapElements_map_coe, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv, CategoryTheory.comp_eqToHom_heq_iff, CategoryTheory.Bicategory.hom_inv_whiskerRight_whiskerRight, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, CategoryTheory.Bicategory.Pith.rightUnitor_inv_iso_inv, CategoryTheory.Bicategory.LeftExtension.whiskerIdCancel_right, CategoryTheory.Bicategory.prod_rightUnitor_inv_snd, CategoryTheory.Pretriangulated.Triangle.neg_hom₃, CategoryTheory.NatTrans.app_zero, CategoryTheory.NatTrans.prod'_app_fst, CategoryTheory.Linear.comp_units_smul, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.ShortComplex.Homotopy.refl_h₁, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.Functor.toPreimages_map, CategoryTheory.Bicategory.Pith.associator_hom_iso, CategoryTheory.Limits.KernelFork.condition, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.familyOfElements_apply, CategoryTheory.Limits.biproduct.fromSubtype_π, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_assoc, CategoryTheory.uliftYonedaEquiv_uliftYoneda_map, CategoryTheory.Localization.SmallShiftedHom.equiv_shift', CategoryTheory.Limits.kernel.ι_of_zero, prevD_eq_zero, CategoryTheory.finrank_hom_simple_simple_eq_zero_iff, CategoryTheory.MonObj.one_comp, CategoryTheory.Quotient.compClosure.congruence, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, CategoryTheory.Functor.IsCartesian.universal_property, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Adjunction.mkOfHomEquiv_unit_app, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, CategoryTheory.Bicategory.associator_naturality_left_assoc, CategoryTheory.finrank_hom_simple_simple_eq_zero_of_not_iso, CategoryTheory.StrictPseudofunctorCore.map₂_right_unitor, Condensed.epi_iff_locallySurjective_on_compHaus, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_inv_as_app, groupCohomology.mapShortComplexH2_zero, CategoryTheory.Bicategory.prod_leftUnitor_inv_fst, CategoryTheory.Bicategory.triangle_assoc_comp_right_inv_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app_assoc, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagramOfIsLimit_map, CategoryTheory.NonPreadditiveAbelian.add_zero, CategoryTheory.Limits.Fork.IsLimit.homIso_apply_coe, CategoryTheory.Adjunction.instMonoCoeEquivHomObjHomEquivOfReflectsMonomorphisms, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂, CategoryTheory.Bicategory.hom_inv_whiskerRight, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app, CategoryTheory.InducedCategory.homAddEquiv_symm_apply_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, CategoryTheory.Bicategory.prod_rightUnitor_hom_fst, CategoryTheory.Bicategory.Adjunction.left_triangle, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, FreeGroupoid.congr_comp_reverse, CategoryTheory.LocalizerMorphism.equiv_smallHomMap', Rep.resIndAdjunction_homEquiv_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, CategoryTheory.coyonedaEquiv_naturality, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, Opens.mayerVietorisSquare_X₂, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.GrothendieckTopology.yonedaEquiv_comp, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_comp, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_apply, CategoryTheory.Limits.PushoutCocone.mk_ι_app, CategoryTheory.coyonedaEquiv_apply, CategoryTheory.Lax.OplaxTrans.naturality_naturality, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Limits.compCoyonedaSectionsEquiv_apply_app, SemimoduleCat.homAddEquiv_apply, AddGrpCat.ofHom_injective, CategoryTheory.PreZeroHypercover.shrink_X, CategoryTheory.Functor.PreservesHomology.preservesCokernels, groupHomology.d₁₀_comp_coinvariantsMk, AlgebraicGeometry.LocallyRingedSpace.Hom.ext_iff, CategoryTheory.ShortComplex.HasLeftHomology.of_hasCokernel, CategoryTheory.Preadditive.cokernelCoforkOfCofork_π, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp', CategoryTheory.Limits.biproduct.toSubtype_fromSubtype, CategoryTheory.Bicategory.Prod.fst_mapId_hom, CategoryTheory.Quiv.homOfEq_map_homOfEq, CategoryTheory.Bicategory.triangle_assoc_comp_right_inv, CategoryTheory.Bicategory.associator_naturality_middle, CategoryTheory.Functor.IsStronglyCartesian.universal_property', CategoryTheory.MonObj.comp_pow, CategoryTheory.Bicategory.prod_id_snd, CategoryTheory.Presheaf.isLocallyInjective_forget_iff, CategoryTheory.Functor.comp_homologySequenceδ, CategoryTheory.regularTopology.isLocallySurjective_iff, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CategoryTheory.Limits.cokernelBiprodInrIso_hom, CategoryTheory.Limits.kernel.condition, HomologicalComplex.homotopyCofiber.inlX_desc_f_assoc, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Biprod.column_nonzero_of_iso, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.g', CategoryTheory.ShortComplex.smul_τ₃, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.ShortComplex.homologyMap_neg, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, CochainComplex.mappingCone.decomp_from, CategoryTheory.Subgroupoid.IsWide.id_mem, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, AlgebraicTopology.DoldKan.P_succ, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π_assoc, CategoryTheory.Bicategory.prod_leftUnitor_inv_snd, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, HomologicalComplex.homotopyCofiber.d_fstX, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.unop_neg, CategoryTheory.StrictPseudofunctor.comp_map, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_hom_τl, FGModuleCat.ihom_obj, CategoryTheory.Pretriangulated.Triangle.invRotate_mor₁, CategoryTheory.Bicategory.LeftExtension.IsKan.fac_assoc, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_pt, CategoryTheory.CategoryOfElements.ext_iff, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Limits.biprod.inl_snd, CategoryTheory.Bicategory.leftUnitorNatIso_hom_app, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_fiber, CategoryTheory.Iso.unop2_op_inv, CochainComplex.mappingCone.inr_triangleδ_assoc, CategoryTheory.PrelaxFunctor.map₂_inv, CategoryTheory.Biprod.ofComponents_comp, CategoryTheory.StrictPseudofunctorPreCore.map_comp, CategoryTheory.ShortComplex.HomologyMapData.zero_right, CategoryTheory.Limits.limit.existsUnique, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_inv_τl, CochainComplex.mappingCone.inl_v_snd_v_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, CategoryTheory.ShortComplex.Homotopy.symm_h₃, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.StrictPseudofunctor.mk''_map, HomologicalComplex.cylinder.inlX_π, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_inverse_map, CategoryTheory.Grp_Class.zpow_comp, Rep.leftRegularHomEquiv_symm_apply, CategoryTheory.Oplax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Comonad.adj_counit, CategoryTheory.ShortComplex.SnakeInput.w₁₃_assoc, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.Adjunction.homAddEquiv_add, Bicategory.Opposite.opFunctor_obj, CategoryTheory.endomorphism_simple_eq_smul_id, CategoryTheory.Bicategory.Prod.sectL_mapId_hom, CategoryTheory.Limits.Sigma.ι_π, TopologicalSpace.Opens.coe_id, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_hom, CategoryTheory.CatCenter.smul_eq', CategoryTheory.ShortComplex.LeftHomologyMapData.add_φH, TopCat.presheafToTypes_map, CommRingCat.HomTopology.isEmbedding_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Functor.mapComposableArrowsObjMk₁Iso_hom_app, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_hom_right, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.Grp.Hom.hom_pow, CategoryTheory.Functor.prod'_δ_fst, CategoryTheory.Functor.prod'_μ_snd, HomologicalComplex.biprod_inr_fst_f, CategoryTheory.Bicategory.Pith.whiskerLeft_iso_hom, AddCommGrpCat.zero_apply, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.stalkMap_congr_hom, CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup_apply, CategoryTheory.Bicategory.mateEquiv_symm_apply, CategoryTheory.Functor.Elements.initialOfCorepresentableBy_snd, CategoryTheory.Pseudofunctor.map₂_whisker_left_assoc, CategoryTheory.Limits.cokernel.condition_assoc, ModuleCat.ExtendRestrictScalarsAdj.homEquiv_symm_apply, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τr, PresheafOfModules.homEquivOfIsLocallyBijective_apply, TopModuleCat.comp_cokerπ, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso, CategoryTheory.Bicategory.leftUnitor_whiskerRight, CategoryTheory.Limits.IsZero.unique_from, Bicategory.Opposite.homCategory_comp_unop2, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, HomologicalComplex.homotopyCofiber.eq_desc, PresheafOfModules.unitHomEquiv_apply_coe, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, Rep.coindResAdjunction_homEquiv_apply, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_fiber, groupCohomology.inhomogeneousCochains.d_comp_d, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.sum.inrCompInrCompInverseAssociator_inv_app_down, CategoryTheory.PreGaloisCategory.exists_autMap, CategoryTheory.conjugateEquiv_symm_comp, CategoryTheory.StrictPseudofunctor.toFunctor_obj, CategoryTheory.Sieve.functorInclusion_app, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_snd, Opens.coe_mayerVietorisSquare_X₁, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc, CategoryTheory.Bicategory.associator_eqToHom_inv_assoc, AlgebraicTopology.DoldKan.Hσ_eq_zero, CochainComplex.ConnectData.d₀_comp, CategoryTheory.StrictPseudofunctor.map_comp, CategoryTheory.Limits.Trident.IsLimit.homIso_apply_coe, CategoryTheory.associator_def, CategoryTheory.Functor.toOplaxFunctor'_map, AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq, HomologicalComplex.tensor_unit_d₂, CategoryTheory.Bicategory.HasLeftKanLift.hasInitial, CategoryTheory.Sheaf.ΓObjEquivHom_naturality_symm, CategoryTheory.Join.opEquiv_inverse_map_inclLeft_op, CategoryTheory.Bicategory.prod_leftUnitor_hom_snd, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.ShortComplex.RightHomologyData.ι_descQ_eq_zero_of_boundary_assoc, ChainComplex.mk'_congr_succ'_d, CategoryTheory.tensorRightHomEquiv_naturality, AlgebraicGeometry.SpecToEquivOfLocalRing_apply_fst, CategoryTheory.Limits.cokernelBiproductιIso_inv, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CochainComplex.IsKProjective.nonempty_homotopy_zero, CategoryTheory.Limits.piPiIso_hom, SimplicialObject.Splitting.IndexSet.fac_pull, CategoryTheory.Groupoid.vertexGroupIsomOfMap_apply, CategoryTheory.StrictlyUnitaryPseudofunctor.mapId_eq_eqToIso, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, CategoryTheory.MorphismProperty.Comma.ext_iff, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.id_obj, CategoryTheory.Bicategory.whiskerLeft_inv_hom_whiskerRight_assoc, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, CategoryTheory.Pseudofunctor.StrongTrans.isoMk_inv_as_app, CategoryTheory.Bicategory.whisker_exchange_assoc, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.AsSmall.up_map_down, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_fst, Hom.opEquiv_symm_apply, CategoryTheory.tensorRightHomEquiv_tensor, CategoryTheory.Hom.mulEquivCongrRight_symm_apply, CategoryTheory.MonObj.mul_comp_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_hom_as_app, CategoryTheory.Limits.kernelBiproductπIso_inv, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₁, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, HomologicalComplex.homologyι_comp_fromOpcycles_assoc, CategoryTheory.Subfunctor.range_eq_ofSection', CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_hom, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, CategoryTheory.unop_add, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Functor.FullyFaithful.homNatIso'_hom_app_down, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv, CategoryTheory.Preadditive.kernelForkOfFork_ι, CategoryTheory.Bicategory.pentagon, CategoryTheory.CatEnrichedOrdinary.Hom.base_comp, CategoryTheory.ShortComplex.Homotopy.comp_h₁, CategoryTheory.ULiftHom.up_map_down, CategoryTheory.Oplax.OplaxTrans.homCategory_comp_as_app, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanMap_app, CategoryTheory.Pretriangulated.Triangle.zero_hom₁, CategoryTheory.Bicategory.Prod.snd_obj, HomologicalComplex.cylinder.inlX_π_assoc, SheafOfModules.conjugateEquiv_pullbackComp_inv, CategoryTheory.Types.instPreservesColimitsOfSizeForgetTypeHom, TopCat.Presheaf.covering_presieve_eq_self, CategoryTheory.WithTerminal.liftFromOverComp_hom_app, CategoryTheory.Functor.coe_mapAddHom, CategoryTheory.ShortComplex.SnakeInput.L₀_g_δ, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, HomologicalComplex₂.d₂_eq_zero', CategoryTheory.Functor.RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, CategoryTheory.Bicategory.rightUnitor_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc, HomologicalComplex₂.ιTotal_totalFlipIso_f_hom_assoc, CategoryTheory.ShortComplex.Splitting.leftHomologyData_π, CategoryTheory.Abelian.Ext.mk₀_sum, CategoryTheory.Lax.OplaxTrans.vComp_naturality_naturality, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.Limits.prod.inl_snd_assoc, FintypeCat.equivEquivIso_symm_apply_apply, CategoryTheory.Types.hom_eq_coe, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two, HomologicalComplex.d_comp_d', CategoryTheory.Limits.bicone_ι_π_ne_assoc, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.regularTopology.isLocallySurjective_sheaf_of_types, CategoryTheory.Limits.IsColimit.homEquiv_symm_naturality, CategoryTheory.Prod.snd_map, imageToKernel_epi_of_zero_of_mono, CategoryTheory.Limits.HasZeroMorphisms.zero_comp, HomologicalComplex.zero_f, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', CategoryTheory.CatEnrichedOrdinary.id_hComp, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, CategoryTheory.OplaxFunctor.map₂_rightUnitor_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom, CategoryTheory.nerve.homEquiv_id, CategoryTheory.StructuredArrow.w_prod_snd, CochainComplex.mkHom_f_succ_succ, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_id, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_eq_zero, CategoryTheory.Limits.BinaryBicone.toBiconeFunctor_map_hom, CategoryTheory.ConcreteCategory.hom_injective, CategoryTheory.Prod.fac'_assoc, CategoryTheory.Functor.isIso_ranAdjunction_homEquiv_iff, CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget, CategoryTheory.LocallyDiscrete.mkPseudofunctor_map, CochainComplex.mappingCone.d_snd_v_assoc, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, CategoryTheory.HomOrthogonal.matrixDecomposition_comp, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc, CategoryTheory.Limits.Multicofork.map_ι_app, CochainComplex.shiftFunctor_map_f, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.Lax.OplaxTrans.id_naturality, CategoryTheory.isCommMonObj_iff_isMulCommutative, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.ShortComplex.cyclesMap'_zero, CochainComplex.mappingCone.d_snd_v', CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_iff_epi₁, CategoryTheory.ShortComplex.zero_τ₃, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, CategoryTheory.ShortComplex.HasRightHomology.of_hasCokernel, CategoryTheory.Limits.biproduct.ι_π_ne, CategoryTheory.CoreSmallCategoryOfSet.functor_map, CategoryTheory.Pretriangulated.contractibleTriangleFunctor_map_hom₃, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_hom_app_val_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, AlgebraicTopology.DoldKan.Γ₀_map_app, CategoryTheory.PrelaxFunctor.mapFunctor_map, CategoryTheory.ObjectProperty.leftOrthogonal.map_bijective_of_isTriangulated, CategoryTheory.ShortComplex.Homotopy.sub_h₃, CategoryTheory.Bicategory.whiskerRight_congr, CategoryTheory.Limits.biproduct.fromSubtype_π_assoc, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois_apply, CategoryTheory.Prod.hom_ext_iff, CategoryTheory.Limits.Cone.equiv_inv_π, CategoryTheory.ShortComplex.Homotopy.trans_h₂, Action.FintypeCat.quotientToEndHom_mk, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, CategoryTheory.Bicategory.LeftLift.whisker_unit, AlgebraicTopology.DoldKan.Q_f_0_eq, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_symm_apply, CategoryTheory.Triangulated.TStructure.zero_of_isLE_of_isGE, CategoryTheory.ShortComplex.RightHomologyData.wι, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, HomologicalComplex.mapBifunctor.d_eq, CategoryTheory.prod_comp_fst, CategoryTheory.IsPullback.zero_left, CategoryTheory.Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryTheory.Sheaf.isLocallyInjective_forget, CategoryTheory.ShortComplex.iCycles_g_assoc, CategoryTheory.Bicategory.prod_homCategory_id_fst, SingleObj.toHom_apply, CategoryTheory.OplaxFunctor.map₂_leftUnitor, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Sieve.uliftNatTransOfLe_app_down_coe, CategoryTheory.Bicategory.conjugateEquiv_symm_comp, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.ShortComplex.Exact.mono_g_iff, ModuleCat.hom_sum, CategoryTheory.ShortComplex.SnakeInput.w₀₂, CategoryTheory.ShortComplex.rightHomologyMap_zero, CategoryTheory.ShortComplex.exact_iff_i_p_zero, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_assoc, CategoryTheory.Limits.Bicone.ofLimitCone_ι, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.Bicategory.pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.CommSq.right_adjoint_hasLift_iff, CategoryTheory.Limits.biprod.map_eq, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π_assoc, starEquivCostar_apply_snd, CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_snd_apply, CategoryTheory.StrictPseudofunctor.mk'_map, CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext', CategoryTheory.Bicategory.mateEquiv_hcomp, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_obj, CategoryTheory.subsingleton_of_unop, CategoryTheory.Iso.homCongr_apply, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.Lax.LaxTrans.naturality_naturality, CategoryTheory.Bicategory.Adj.leftUnitor_inv_τl, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, Bicategory.Opposite.op2_rightUnitor_hom, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, CategoryTheory.PreGaloisCategory.card_hom_le_card_fiber_of_connected, CategoryTheory.Bicategory.whiskerLeft_eqToHom, Homotopy.ofEq_hom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, CategoryTheory.Bicategory.Pith.id₂_iso_hom, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_comp, HomologicalComplex₂.D₂_shape, CategoryTheory.Adjunction.homEquiv_naturality_right_square_iff, CategoryTheory.conjugateEquiv_counit, CategoryTheory.Mon.Hom.hom_mul, CategoryTheory.Bicategory.associator_hom_congr, CochainComplex.IsKProjective.Qh_map_bijective, Mathlib.Tactic.Bicategory.naturality_leftUnitor, Bicategory.Opposite.unopFunctor_obj, Rep.coindIso_inv_hom_hom, CochainComplex.mappingCone.d_fst_v_assoc, CategoryTheory.tensor_sum, CategoryTheory.Preadditive.mono_iff_isZero_kernel', CategoryTheory.ShortComplex.LeftHomologyData.wi, Action.zero_hom, CategoryTheory.Hom.inv_def, CategoryTheory.Limits.WalkingMultispan.instSubsingletonHomRight, CategoryTheory.Prod.fac_assoc, ModuleCat.hom_nsmul, CategoryTheory.Functor.prod_map, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inl, SimplicialObject.Splitting.IndexSet.id_snd_coe, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.unopHom_apply, CategoryTheory.Bicategory.pentagon_inv_inv_hom_inv_inv_assoc, CategoryTheory.Functor.ranges_directed, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Functor.toOplaxFunctor_mapComp, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_assoc, CategoryTheory.Preadditive.isCoseparating_iff, CategoryTheory.InducedCategory.homAddEquiv_apply, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, CategoryTheory.MonoidalPreadditive.tensor_zero, CategoryTheory.Bicategory.Comonad.comul_assoc, groupCohomology.subtype_comp_d₀₁_assoc, CategoryTheory.sum.inrCompInlCompAssociator_inv_app_down_down, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, CategoryTheory.Limits.pullback_map_diagonal_isPullback, CategoryTheory.Functor.partialLeftAdjointHomEquiv_map_comp, CategoryTheory.Bicategory.comp_whiskerLeft, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CategoryTheory.Adjunction.homAddEquiv_symm_zero, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, TopCat.Presheaf.presieveOfCovering.indexOfHom_spec, CategoryTheory.ShortComplex.sub_τ₁, CategoryTheory.Functor.RepresentableBy.homEquiv_comp, CategoryTheory.OplaxFunctor.mapComp_naturality_left, CategoryTheory.conjugateEquiv_rightUnitor_hom, CategoryTheory.Lax.StrongTrans.naturality_id, CategoryTheory.Bicategory.LeftLift.whiskerHom_right, CategoryTheory.Mat_.add_apply, CategoryTheory.Bicategory.prod_associator_hom_fst, CategoryTheory.Grp_Class.inv_comp, CategoryTheory.CategoryOfElements.π_map, CategoryTheory.IsPushout.of_isBilimit, PresheafOfModules.neg_app, CategoryTheory.Bicategory.LeftExtension.ofCompId_hom, CategoryTheory.Functor.prod_ε_fst, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_as_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv, CategoryTheory.Bicategory.prod_homCategory_comp_fst, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero, CategoryTheory.instIsMonHomInvHomOfIsCommMonObj, HomologicalComplex.homotopyCofiber.inlX_sndX, CategoryTheory.Functor.RepresentableBy.isRepresentedBy, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₂, CategoryTheory.Linear.homCongr_apply, CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.StrictlyUnitaryLaxFunctor.id_map, CategoryTheory.ShortComplex.Homotopy.add_h₀, HomologicalComplex.truncGE'.d_comp_d_assoc, CategoryTheory.ShortComplex.cyclesMap_zero, CategoryTheory.Limits.asEmptyCocone_ι_app, ModuleCat.homEquiv_extendScalarsComp, Total.ext_iff, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_apply_snd, dNext_comp_left, CategoryTheory.CommSq.left_adjoint_hasLift_iff, CategoryTheory.Pseudofunctor.mapComp_id_left_inv, CategoryTheory.ShortComplex.cyclesMap'_smul, CategoryTheory.Idempotents.Karoubi.sum_hom, SemimoduleCat.hom_zero, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φH, CategoryTheory.WithInitial.pseudofunctor_mapId, CategoryTheory.sum.inlCompInlCompAssociator_inv_app_down, CategoryTheory.Sieve.uliftFunctorInclusion_app, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τr, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_whisker_left, CategoryTheory.conjugateEquiv_mateEquiv_vcomp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, HomologicalComplex.homotopyCofiber.inlX_d, HomologicalComplex.mapBifunctor₂₃.d₁_eq, CategoryTheory.ShiftedHom.opEquiv'_symm_apply, CategoryTheory.GrpObj.div_comp_assoc, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_right_addition, CategoryTheory.ConcreteCategory.hom_bijective, CategoryTheory.Bicategory.Comonad.counit_def, CategoryTheory.NonPreadditiveAbelian.lift_sub_lift, RingCat.moduleCatRestrictScalarsPseudofunctor_map, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.LaxFunctor.map₂_associator, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.Bicategory.associator_inv_naturality_left_assoc, CategoryTheory.Monad.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.ShortComplex.HasRightHomology.of_hasKernel, CategoryTheory.Grp_Class.comp_div, CategoryTheory.OplaxFunctor.mapComp_id_right_assoc, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.Bicategory.whiskerLeftIso_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapId, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.Comma.equivProd_inverse_map_right, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_hom, CategoryTheory.tensorObj_def, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.mateEquiv_conjugateEquiv_vcomp, CategoryTheory.Iso.unop2_hom, CategoryTheory.OplaxFunctor.mapComp_assoc_right, CategoryTheory.Bicategory.mateEquiv_eq_iff, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, HomologicalComplex.ιMapBifunctorOrZero_eq_zero, CategoryTheory.Arrow.equivSigma_symm_apply_hom, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.Preadditive.comp_sum, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₃, CategoryTheory.Limits.biproduct.fromSubtype_eq_lift, CategoryTheory.Functor.prod_μ_fst, CategoryTheory.Bicategory.LeftLift.ofIdComp_right, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionRight_op, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_inv, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, CategoryTheory.NatTrans.prod_app_snd, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, CategoryTheory.Limits.Cotrident.IsColimit.homIso_symm_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Bicategory.postcomposing_map_app, Bicategory.Opposite.op2_comp, CategoryTheory.Bicategory.pentagon_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality, groupCohomology.d₁₂_comp_d₂₃, CategoryTheory.yonedaGrpObj_map, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Limits.eq_zero_of_epi_kernel, CategoryTheory.Pseudofunctor.StrongTrans.Modification.id_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, CategoryTheory.Bicategory.whiskerRight_comp, CategoryTheory.ObjectProperty.isLocal.homEquiv_apply, CategoryTheory.Limits.IsZero.map, CategoryTheory.CatCenter.smul_eq, CategoryTheory.Bicategory.rightUnitorNatIso_inv_app, CategoryTheory.Functor.RepresentableBy.homEquiv_unop_comp, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.Pseudofunctor.StrongTrans.associator_inv_as_app, Homotopy.symm_hom, Bicategory.Opposite.op2_leftUnitor_hom, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom, CategoryTheory.Linear.comp_smul, CategoryTheory.MonoidalClosed.uncurry_injective, CategoryTheory.Bicategory.Comonad.comul_counit_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Functor.IsCocartesian.universal_property, CategoryTheory.Bicategory.congr_whiskerLeft, CochainComplex.ι_mapBifunctorShift₂Iso_hom_f, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv, CategoryTheory.Mon.uniqueHomFromTrivial_default_hom, CategoryTheory.ComposableArrows.isComplex₂_iff, CategoryTheory.Functor.FullyFaithful.map_surjective, CategoryTheory.Preadditive.comp_zsmul, CategoryTheory.Pseudofunctor.toLax_mapId, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.ShiftedHom.mk₀_add, SimplicialObject.Splitting.IndexSet.instEpiSimplexCategoryE, SheafOfModules.Presentation.map_relations_I, HomologicalComplex₂.D₁_totalShift₁XIso_hom, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv, CategoryTheory.Functor.hom_obj, CategoryTheory.Functor.shiftMap_zero, HomologicalComplex₂.D₂_totalShift₁XIso_hom, CategoryTheory.Subgroupoid.mem_sInf, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Localization.homEquiv_apply, ComplexShape.Embedding.homEquiv_symm_apply, CategoryTheory.Oplax.OplaxTrans.isoMk_hom_as_app, CategoryTheory.Cat.leftUnitor_hom_toNatTrans, CategoryTheory.StructuredArrow.prodFunctor_obj, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_hom_assoc, CategoryTheory.Bicategory.whiskerLeft_inv_hom_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.Bicategory.Adj.comp_τr_assoc, CategoryTheory.ShortComplex.toCycles_comp_leftHomologyπ, CategoryTheory.Bicategory.whisker_assoc_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.δ_toBiprod_assoc, CategoryTheory.Preadditive.add_comp, SSet.stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, CategoryTheory.conjugateEquiv_comm, SimplicialObject.Splitting.cofan_inj_comp_app, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_three, PresheafOfModules.sub_app, CategoryTheory.GrpObj.comp_div, AlgebraicTopology.NormalizedMooreComplex.d_squared, HomologicalComplex.homologyMap_sub, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Limits.kernelSubobject_factors_iff, CategoryTheory.Functor.isIso_lanAdjunction_homEquiv_symm_iff, CategoryTheory.Preadditive.add_comp_assoc, TopCat.subpresheafToTypes_map_coe, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, CategoryTheory.Prod.fac, CategoryTheory.MorphismProperty.isLocal_iff, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom, CategoryTheory.Bicategory.associator_eqToHom_hom, CategoryTheory.Mon_Class.comp_pow, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_fst, AlgebraicTopology.DoldKan.Γ₀.map_app, CategoryTheory.Bicategory.whisker_assoc_symm, ComplexShape.Embedding.homEquiv_apply_coe, CategoryTheory.extendCofan_ι_app, CategoryTheory.LocallySmall.hom_small, Homotopy.dNext_succ_chainComplex, CategoryTheory.Lax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, HomologicalComplex.homotopyCofiber.shape, CategoryTheory.CommSq.right_adjoint, CategoryTheory.Bicategory.Prod.sectL_mapComp_inv, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Functor.sectionsEquivHom_naturality_symm, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.Functor.IsEventuallyConstantFrom.coconeιApp_eq, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two_assoc, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, groupHomology.d₂₁_comp_d₁₀, HomotopicalAlgebra.FibrantObject.homRel_equivalence_of_isCofibrant_src, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.δ_toBiprod, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φH, CategoryTheory.Equivalence.congrLeftFunctor_map, CategoryTheory.Bicategory.id_whiskerLeft_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, HomologicalComplex.cylinder.πCompι₀Homotopy.inrX_nullHomotopy_f, CategoryTheory.CatEnriched.hComp_assoc_heq, CategoryTheory.Bicategory.LeftLift.IsKan.fac, CategoryTheory.Adjunction.homAddEquiv_symm_neg, CategoryTheory.Abelian.Ext.mk₀_zero, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.Bicategory.Pith.id_of, CategoryTheory.MonoidalCategory.prodMonoidal_whiskerLeft, SheafOfModules.Presentation.mapRelations_mapGenerators, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_inv, ModuleCat.hom_add, Bicategory.Opposite.op2_id, CommRingCat.HomTopology.continuous_apply, CategoryTheory.IsPushout.inr_fst', CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero_assoc, CategoryTheory.GrpObj.comp_zpow_assoc, CategoryTheory.Bicategory.toNatTrans_mateEquiv, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom, CategoryTheory.Iso.unop2_op_hom, CategoryTheory.OplaxFunctor.map₂_rightUnitor, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, CategoryTheory.uliftYoneda_map_app, CategoryTheory.Functor.prod'_η_snd, CategoryTheory.ShortComplex.RightHomologyData.ι_g'_assoc, CategoryTheory.Localization.SmallHom.equiv_chgUniv, CategoryTheory.Functor.whiskerRight_zero, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_assoc, CategoryTheory.Functor.uliftYonedaReprXIso_hom_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, CategoryTheory.Limits.kernel.ι_zero_isIso, CategoryTheory.equivYoneda_hom_app, CochainComplex.HomComplex.δ_zero_cochain_v, CochainComplex.HomComplex.Cochain.units_smul_v, CategoryTheory.NonPreadditiveAbelian.neg_add_cancel, CategoryTheory.GrpObj.inv_eq_inv, HomologicalComplex.smul_f_apply, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_left, CategoryTheory.Cat.associator_inv_toNatTrans, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.Limits.FintypeCat.instPreservesFiniteColimitsFintypeCatForgetHomCarrier, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Iso.homToEquiv_apply, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φK, Compactum.continuous_of_hom, CategoryTheory.Functor.curryingEquiv_apply_map, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂, CategoryTheory.ShortComplex.HomologyMapData.add_right, CompHausLike.pullback.cone_π, CategoryTheory.NatTrans.app_sum, Mathlib.Tactic.Bicategory.naturality_id, CategoryTheory.Cat.leftUnitor_inv_toNatTrans, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.Functor.initial_iff_of_isCofiltered, CategoryTheory.Join.mapPairId_inv_app, CategoryTheory.Pseudofunctor.map₂_left_unitor_app, CategoryTheory.Pseudofunctor.mapId'_eq_mapId, CategoryTheory.Limits.biproduct.total, CategoryTheory.Functor.CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, CategoryTheory.Bicategory.associator_inv_naturality_right_assoc, CategoryTheory.Preadditive.coforkOfCokernelCofork_π, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁_assoc, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.GrpObj.zpow_comp, CategoryTheory.Limits.biprod.inrCokernelCofork_π, CategoryTheory.Limits.IsTerminal.subsingleton_to, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.ShortComplex.rightHomologyMap_sub, CategoryTheory.StrictPseudofunctor.toFunctor_map, CategoryTheory.Bicategory.Prod.snd_mapId_hom, CategoryTheory.Bicategory.hom_inv_whiskerRight_assoc, CategoryTheory.MonObj.pow_comp_assoc, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app_assoc, CategoryTheory.Bicategory.triangle, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_hom_as_app, CategoryTheory.sum.inrCompAssociator_hom_app_down_down, CategoryTheory.Limits.Pi.ι_π_assoc, CategoryTheory.Comma.fromProd_map_right, CategoryTheory.Bimon.trivialTo_hom, CategoryTheory.Localization.Preadditive.add_eq, CategoryTheory.Limits.isoZeroOfMonoZero_inv, CategoryTheory.ShortComplex.ShortExact.δ_comp_assoc, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right_symm, CategoryTheory.Functor.map_units_smul, CategoryTheory.MonoidalOpposite.tensorRightIso_hom_app_unmop, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_symm_apply_f, CategoryTheory.CatEnrichedOrdinary.Hom.comp_eq, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_hom, CategoryTheory.Limits.WidePushoutShape.mkCocone_ι_app, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_assoc, HomologicalComplex.zero_f_apply, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_apply, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Bicategory.Prod.sectR_map₂, CategoryTheory.Limits.reflexivePair.diagramIsoReflexivePair_inv_app, CategoryTheory.PreGaloisCategory.fiber_in_connected_component, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, CategoryTheory.congrArg_mpr_hom_left, CategoryTheory.Preadditive.hasCokernel_of_hasCoequalizer, CategoryTheory.Limits.biprod.add_eq_lift_desc_id, CategoryTheory.FreeMonoidalCategory.instSubsingletonHomCompDiscreteNormalMonoidalObject, CategoryTheory.ShortComplex.Splitting.g_s_assoc, CategoryTheory.WithInitial.map_map, SSet.stdSimplex.objEquiv_symm_comp, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, CategoryTheory.StrictPseudofunctorPreCore.map₂_whisker_right, CategoryTheory.ProjectiveResolution.extMk_zero, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_inv, CategoryTheory.PrelaxFunctor.id_toPrelaxFunctorStruct, CategoryTheory.ShortComplex.Homotopy.equivSubZero_apply, Action.add_hom, CategoryTheory.FreeBicategory.normalize_naturality, CategoryTheory.Bicategory.Adj.rIso_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom, CategoryTheory.StrictPseudofunctor.id_map₂, CategoryTheory.Sheaf.ΓObjEquivHom_naturality, CategoryTheory.Limits.sigmaSigmaIso_inv, SimplexCategory.δ_injective, CategoryTheory.HomOrthogonal.matrixDecomposition_apply, CategoryTheory.Bicategory.Prod.sectL_map, CategoryTheory.NatTrans.appHom_apply, HomologicalComplex.toCycles_eq_zero, CategoryTheory.End.smul_right, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left_symm, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, CategoryTheory.LocallyDiscrete.mkPseudofunctor_mapComp, CategoryTheory.Functor.IsRepresentedBy.uliftYonedaIso_hom, CategoryTheory.Bicategory.conjugateIsoEquiv_apply_hom, CategoryTheory.NonPreadditiveAbelian.neg_add, CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f, CategoryTheory.Bicategory.id_whiskerRight, SheafOfModules.pushforwardCongr_symm, CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_hom, CochainComplex.mappingCone.inr_f_fst_v_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom, CategoryTheory.Iso.op2_unop_inv_unop2, CategoryTheory.Limits.biproduct.matrix_desc, CategoryTheory.IsPullback.of_hasBinaryBiproduct, CategoryTheory.MonObj.ofRepresentableBy_mul, Homotopy.add_hom, CategoryTheory.Limits.Cofork.IsColimit.homIso_natural, CategoryTheory.Bicategory.Pith.hom₂_ext_iff, CategoryTheory.Localization.homEquiv_refl, groupHomology.congr, CategoryTheory.IsPushout.inl_snd, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, homOfEq_heq_right_iff, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CochainComplex.mappingCone.inl_v_d_assoc, CategoryTheory.Localization.homEquiv_trans, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, CategoryTheory.Limits.equalizer.existsUnique, Hom.unop_inj, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv', CategoryTheory.IsPullback.of_is_bilimit', ChainComplex.mk'_d, CategoryTheory.Limits.limitCompYonedaIsoCocone_inv, HomologicalComplex.singleMapHomologicalComplex_inv_app_ne, CategoryTheory.MonoidalOpposite.tensorRightIso_inv_app_unmop, CategoryTheory.Limits.asEmptyCone_π_app, CategoryTheory.Quotient.inv_mk, CategoryTheory.Comma.fromProd_map_left, CategoryTheory.SimplicialObject.cechNerveEquiv_symm_apply, SheafOfModules.add_val, CategoryTheory.ShortComplex.HasLeftHomology.of_hasKernel, AlgebraicGeometry.Scheme.Modules.Hom.sub_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Functor.prod_δ_snd, CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv_symm, CategoryTheory.conjugateEquiv_comp_assoc, HomologicalComplex.dgoToHomologicalComplex_map_f, CategoryTheory.Limits.BinaryBicone.inrCokernelCofork_π, CategoryTheory.Bicategory.Adj.rightUnitor_inv_τr, CategoryTheory.Oplax.OplaxTrans.naturality_id, CategoryTheory.coyonedaEquiv_coyoneda_map, CategoryTheory.Limits.pullbackZeroZeroIso_hom_fst, CategoryTheory.Bicategory.rightUnitor_comp, CategoryTheory.Bicategory.whiskerRight_id_symm, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_apply, CategoryTheory.Cat.Hom.instIsIsoFunctorαCategoryToNatTransInvHom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_hom_inv, CategoryTheory.Limits.Trident.ofι_π_app, CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_obj, CategoryTheory.Limits.coneOfSectionCompYoneda_π, CategoryTheory.ShortComplex.sub_τ₂, CategoryTheory.OplaxFunctor.mapComp_id_right, CategoryTheory.op_add, CategoryTheory.Bicategory.triangle_assoc_comp_right, CategoryTheory.ShortComplex.Homotopy.trans_h₃, CategoryTheory.MonoidalCategory.tensor_map, CategoryTheory.Pseudofunctor.toDescentData_obj, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, CategoryTheory.Presheaf.IsSheaf.existsUnique_amalgamation_ofArrows, CategoryTheory.Bicategory.comp_whiskerLeft_assoc, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_hom, CategoryTheory.ShortComplex.rightHomologyMap'_sub, CategoryTheory.Pseudofunctor.mapComp_id_right_inv, CategoryTheory.ShortComplex.Homotopy.neg_h₃, CategoryTheory.StrictlyUnitaryPseudofunctor.id_map₂, CategoryTheory.Bicategory.whiskerLeft_inv_hom_assoc, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.f, CategoryTheory.Comma.unopFunctor_map, AlgebraicTopology.DoldKan.Q_succ, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Bicategory.associatorNatIsoMiddle_hom_app, CategoryTheory.ShortComplex.homologyMap_sub, Prefunctor.costar_fst, HomologicalComplex.cyclesMap_zero, CondensedSet.isDiscrete_tfae, CategoryTheory.linearCoyoneda_obj_map, Rep.standardComplex.d_comp_ε, CategoryTheory.Bicategory.instHasInitialLeftExtensionOfHasLeftKanExtension, ChainComplex.fromSingle₀Equiv_symm_apply_f_zero, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc, CategoryTheory.OverPresheafAux.MakesOverArrow.app, CategoryTheory.Pseudofunctor.map₂_whisker_right_app_assoc, FDRep.simple_iff_end_is_rank_one, CategoryTheory.Limits.unop_zero, CategoryTheory.Grp.Hom.hom_mul, TopologicalSpace.Opens.leSupr_apply_mk, CategoryTheory.Bicategory.mateEquiv_square, PresheafOfModules.comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom, CategoryTheory.Pretriangulated.binaryBiproductTriangle_mor₃, CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_inv, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, CategoryTheory.extendFan_π_app, HomologicalComplex.homologyMap_zero, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality_assoc, CategoryTheory.ShortComplex.Homotopy.trans_h₀, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Lax.LaxTrans.naturality_naturality_assoc, CategoryTheory.ShortComplex.opcyclesMap_zero, CategoryTheory.Bicategory.Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Bicategory.rightUnitor_naturality, CategoryTheory.MonoidalCategory.leftAssocTensor_map, CategoryTheory.CountableCategory.instCountableHomHomAsType, CategoryTheory.PreGaloisCategory.exists_hom_from_galois_of_fiber, CategoryTheory.OverPresheafAux.OverArrows.app_val, CategoryTheory.StrictlyUnitaryPseudofunctor.id_map, CategoryTheory.Subobject.bot_arrow, CategoryTheory.Mon.Hom.hom_pow, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.ShortComplex.neg_τ₂, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.Bicategory.whiskerLeft_comp_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.Subfunctor.range_eq_ofSection, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, CategoryTheory.evaluationUncurried_map, CategoryTheory.Limits.IsZero.iff_isSplitEpi_eq_zero, CategoryTheory.Bicategory.Pith.whiskerLeft_iso_inv, CategoryTheory.Discrete.productEquiv_counitIso_inv_app, CategoryTheory.FinallySmall.exists_small_weakly_terminal_set, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, CategoryTheory.Bicategory.rightZigzagIso_symm, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, HomologicalComplex.toCycles_comp_homologyπ, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_hom, CochainComplex.ConnectData.d_comp_d_assoc, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.MonObj.comp_mul, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_assoc, CategoryTheory.Pi.sum_obj_map, CategoryTheory.Lax.StrongTrans.naturality_comp, CategoryTheory.Bicategory.whiskerLeftIso_hom, CategoryTheory.yonedaPairing_map, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, CochainComplex.HomComplex.Cochain.smul_v, Mathlib.Tactic.Bicategory.structuralIso_inv, CategoryTheory.Functor.toOplaxFunctor_map, HomologicalComplex₂.D₂_D₂_assoc, FintypeCat.hom_apply, CategoryTheory.Pretriangulated.Triangle.isZero₂_iff, HomologicalComplex.homotopyCofiber.d_sndX, CategoryTheory.Pseudofunctor.map₂_whisker_right, CategoryTheory.Limits.cokernelIsoOfEq_trans, CategoryTheory.Bicategory.whiskerRight_id_assoc, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_π, CategoryTheory.Mon_Class.pow_comp, CategoryTheory.Bicategory.Prod.sectR_obj, HomologicalComplex.extendMap_add, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, CategoryTheory.IsPullback.inl_snd', CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂_assoc, CategoryTheory.Bicategory.whisker_assoc_symm_assoc, HomologicalComplex.xPrevIsoSelf_comp_dTo_assoc, CategoryTheory.Preadditive.sum_comp_assoc, CategoryTheory.HomOrthogonal.matrixDecompositionAddEquiv_symm_apply, CategoryTheory.MorphismProperty.pullback_map, CategoryTheory.conjugateEquiv_associator_hom, SimplicialObject.Splitting.decomposition_id, CategoryTheory.PreGaloisCategory.surjective_on_fiber_of_epi, CategoryTheory.GrpObj.inv_comp, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, CategoryTheory.Bicategory.conjugateEquiv_apply', CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, CategoryTheory.sum.inrCompInlCompAssociator_hom_app_down_down, HomologicalComplex.mapBifunctor₁₂.d₃_eq_zero, CategoryTheory.Functor.RepresentableBy.ext_iff, CategoryTheory.Bicategory.mateEquiv_conjugateEquiv_vcomp, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φQ, CochainComplex.toSingle₀Equiv_symm_apply_f_succ, CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_hom_τr, CategoryTheory.Limits.zero_of_source_iso_zero', CategoryTheory.ShortComplex.homologyMap'_smul, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, CategoryTheory.MonObj.comp_one_assoc, Rep.coindResAdjunction_homEquiv_symm_apply, CategoryTheory.Limits.IsZero.eq_zero_of_tgt, CategoryTheory.Pretriangulated.Triangle.neg_hom₂, CategoryTheory.Adjunction.homAddEquiv_zero, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply, CategoryTheory.Iso.op2_unop_hom_unop2, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.FreeBicategory.mk_associator_hom, CategoryTheory.op_sum, AddCommGrpCat.biprodIsoProd_inv_comp_desc, TopModuleCat.hom_sub, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_iff_epi₂, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_hom, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.LaxFunctor.map₂_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_inv, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality, CategoryTheory.Biprod.ofComponents_fst, CategoryTheory.Biprod.unipotentUpper_inv, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.Functor.prod_η_fst, CategoryTheory.IsPullback.of_has_biproduct, SheafOfModules.unitHomEquiv_comp_apply, CategoryTheory.CategoryOfElements.toCostructuredArrow_obj, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_f, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, CategoryTheory.Presheaf.uliftYonedaAdjunction_unit_app_app, CategoryTheory.ShiftedHom.opEquiv'_symm_add, AlgebraicGeometry.ΓSpecIso_inv_ΓSpec_adjunction_homEquiv, CategoryTheory.NonPreadditiveAbelian.add_neg, CategoryTheory.Mon_Class.comp_one, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id, CategoryTheory.Cat.rightUnitor_inv_app, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, AlgebraicGeometry.StructureSheaf.res_apply, Rep.coindVEquiv_apply_hom, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, CategoryTheory.Functor.uncurry_obj_map, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallyInjectiveHomYonedaGluedToSheaf, CategoryTheory.Bicategory.Prod.snd_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app_assoc, AlgebraicGeometry.Scheme.Modules.Hom.add_app, SSet.stdSimplex.yonedaEquiv_map, CategoryTheory.Groupoid.isIsomorphic_iff_nonempty_hom, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, CategoryTheory.CatEnrichedOrdinary.homEquiv_comp, SemiNormedGrp.completion.map_zero, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_as_app, empty_arrow, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_comp_hom, CategoryTheory.Limits.PreservesKernel.of_iso_comparison, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, AlgebraicTopology.DoldKan.P_add_Q, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, CategoryTheory.Cat.Hom.toNatTrans_id, AlgebraicTopology.DoldKan.hσ'_eq, HomologicalComplex₂.d₂_eq, CategoryTheory.CommSq.left_adjoint, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_as_app, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv', CategoryTheory.Lax.StrongTrans.naturality_naturality, CategoryTheory.Limits.limitCompCoyonedaIsoCone_inv, CategoryTheory.Monad.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, HomologicalComplex.extend_d_from_eq_zero, HomotopicalAlgebra.RightHomotopyRel.equivalence, CategoryTheory.Bicategory.precomposing_obj, CategoryTheory.NonPreadditiveAbelian.lift_map_assoc, CategoryTheory.Cat.rightUnitor_inv_toNatTrans, CategoryTheory.ShiftedHom.opEquiv'_zero_add_symm, CategoryTheory.Subobject.bot_eq_zero, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_hom_assoc, Homotopy.extend.hom_eq_zero₂, CategoryTheory.Functor.toPseudoFunctor_mapId, CategoryTheory.Oplax.OplaxTrans.naturality_naturality, CategoryTheory.Bicategory.conjugateEquiv_of_iso, CategoryTheory.ShortComplex.zero, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionRight_op, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc, CategoryTheory.Presheaf.imageSieve_whisker_forget, CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq, CategoryTheory.Subgroupoid.IsNormal.conjugation_bij, TopModuleCat.hom_nsmul, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, CategoryTheory.ShortComplex.LeftHomologyData.liftK_π_eq_zero_of_boundary, Mathlib.Tactic.Elementwise.forget_hom_Type, CategoryTheory.bicategoricalComp_refl, CategoryTheory.Limits.Cofork.IsColimit.existsUnique, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.WithInitial.map₂_app, CategoryTheory.Iso.eHomCongr_comp, CategoryTheory.Bicategory.LeftLift.ofIdComp_hom, CategoryTheory.ShortComplex.Homotopy.neg_h₀, CategoryTheory.Functor.IsRepresentedBy.map_bijective, CategoryTheory.Bicategory.rightZigzagIso_inv, CategoryTheory.Bicategory.prod_comp_fst, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Pseudofunctor.StrongTrans.associator_hom_as_app, HomologicalComplex.toCycles_comp_homologyπ_assoc, CategoryTheory.Limits.image.preComp_comp, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, CategoryTheory.Pseudofunctor.map₂_right_unitor, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CategoryTheory.Functor.representableByUliftFunctorEquiv_apply_homEquiv, CategoryTheory.Lax.LaxTrans.StrongCore.naturality_hom, CategoryTheory.ShiftedHom.homEquiv_apply, HomologicalComplex₂.D₂_D₁, CategoryTheory.tensorUnit_def, CategoryTheory.Bicategory.Pith.associator_inv_iso_inv, CategoryTheory.Bicategory.rightUnitor_comp_inv, LightCondensed.ihomPoints_symm_apply, CategoryTheory.Pretriangulated.Triangle.add_hom₂, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom_op, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, CategoryTheory.Limits.CokernelCofork.condition_assoc, CategoryTheory.Localization.hasSmallLocalizedHom_iff, CategoryTheory.Subgroupoid.coe_inv_coe', CategoryTheory.Bicategory.whiskerLeft_hom_inv_assoc, AlgebraicTopology.DoldKan.hσ'_eq_zero, CategoryTheory.ShortComplex.add_τ₂, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, CategoryTheory.NormalMono.w, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.initiallySmall_iff_exists_small_weakly_initial_set, CategoryTheory.uliftCoyonedaEquiv_naturality, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc, HomologicalComplex₂.shape_f, Mathlib.Tactic.Bicategory.evalWhiskerRight_nil, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, CategoryTheory.Pretriangulated.Triangle.zero_hom₃, SemiNormedGrp₁.zero_apply, CategoryTheory.Pretriangulated.Triangle.add_hom₃, CategoryTheory.Pseudofunctor.mapComp'_eq_mapComp, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.CatCenter.app_neg_one_zpow, CategoryTheory.MonoidalPreadditive.zero_tensor, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_map, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, SSet.stdSimplex.objEquiv_toOrderHom_apply, CategoryTheory.Localization.SmallHom.equiv_comp, CategoryTheory.Bicategory.HasLeftKanExtension.hasInitial, CategoryTheory.Limits.fst_of_isColimit, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CategoryTheory.ShortComplex.rightHomologyMap_add, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left, CategoryTheory.NonPreadditiveAbelian.add_comp, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, CategoryTheory.Limits.coprod.inr_fst_assoc, CategoryTheory.PrelaxFunctor.map₂_comp, CategoryTheory.Presieve.uncurry_ofArrows, CategoryTheory.Functor.homEquivOfIsRightKanExtension_symm_apply, Bicategory.Opposite.unop2_comp, CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.Limits.inr_pushoutZeroZeroIso_inv, CategoryTheory.NatTrans.toCatHom₂_comp, CategoryTheory.Limits.Bicone.ι_π, CategoryTheory.ComposableArrows.isoMk₀_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_map₂, CategoryTheory.GrpObj.div_comp, CategoryTheory.Limits.limit.homIso_hom, CategoryTheory.Functor.prod'_ε_snd, CategoryTheory.Limits.biprod.inr_fst_assoc, CategoryTheory.sum.inrCompAssociator_inv_app_down_down, CategoryTheory.Limits.colimit.existsUnique, CategoryTheory.PrelaxFunctor.mapFunctor_obj, CategoryTheory.Adjunction.equivHomsetRightOfNatIso_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.uliftYonedaIsoYoneda_hom_app_app, CategoryTheory.ShortComplex.rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_symm_apply, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_iso_hom, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_hom_as_app, CategoryTheory.Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.Pseudofunctor.map₂_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CochainComplex.mappingCone.decomp_to, CategoryTheory.Bicategory.lanUnit_desc, SemiNormedGrp.explicitCokernelDesc_zero, CategoryTheory.eqToHom_down, CategoryTheory.equivYoneda_inv_app, CategoryTheory.CommSq.shortComplex'_g, CategoryTheory.uliftCoyonedaEquiv_symm_map_assoc, Rep.leftRegularHomEquiv_symm_single, CategoryTheory.PreGaloisCategory.comp_autMap_apply, AlgebraicGeometry.Spec.homEquiv_apply, CategoryTheory.Subgroupoid.IsNormal.vertexSubgroup, CategoryTheory.StrictPseudofunctor.comp_mapComp_inv, CategoryTheory.Bicategory.whiskerLeft_id, inhomogeneousCochains.d_eq, CategoryTheory.Adjunction.homAddEquiv_symm_apply, CategoryTheory.Functor.Faithful.map_injective, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, HomologicalComplex.extend.comp_d_eq_zero_iff, CategoryTheory.NatTrans.appLinearMap_apply, CategoryTheory.MonoidalClosed.curry_injective, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.Localization.Construction.liftToPathCategory_map, CategoryTheory.Limits.Trident.IsLimit.homIso_symm_apply, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.ActionCategory.comp_val, CategoryTheory.Abelian.Pseudoelement.zero_eq_zero, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, Mathlib.Tactic.Bicategory.eval_of, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.shift_zero_eq_zero, CategoryTheory.Functor.Final.zigzag_of_eqvGen_colimitTypeRel, CategoryTheory.Limits.BinaryBicone.inlCokernelCofork_π, CategoryTheory.Pseudofunctor.mapComp'_naturality_2, CategoryTheory.Groupoid.invEquiv_symm_apply, CategoryTheory.IsPullback.zero_bot, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, CategoryTheory.ObjectProperty.rightOrthogonal.map_bijective_of_isTriangulated, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_base, CategoryTheory.Functor.CorepresentableBy.homEquiv_comp, CategoryTheory.CatEnrichedOrdinary.hComp_id_heq, HomologicalComplex₂.D₁_D₂_assoc, CategoryTheory.Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, CategoryTheory.Adjunction.homAddEquiv_symm_add, Homotopy.trans_hom, CategoryTheory.Lax.StrongTrans.id_naturality_inv, CategoryTheory.LocalizerMorphism.equiv_smallHomMap, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.Idempotents.Karoubi.complement_p, CategoryTheory.Sheaf.instIsLocallySurjectiveHomMapTypeSheafComposeForget, CategoryTheory.ite_comp, SemiNormedGrp.comp_explicitCokernelπ, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app_assoc, CategoryTheory.conjugateEquiv_symm_comm, CategoryTheory.Oplax.OplaxTrans.naturality_naturality_assoc, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, CategoryTheory.Limits.Sigma.ι_π_of_ne_assoc, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom, CategoryTheory.Limits.MultispanIndex.parallelPairDiagramOfIsColimit_map, CategoryTheory.Bicategory.InducedBicategory.forget_obj, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CochainComplex.mappingCone.lift_desc_f, SingleObj.toHom_symm_apply, CategoryTheory.Bicategory.Adj.Bicategory.associator_inv_τl, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.Limits.CokernelCofork.map_condition, CategoryTheory.MonoidalOpposite.tensorRightMopIso_inv_app_unmop, CategoryTheory.Limits.biproduct.lift_matrix, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, CategoryTheory.MonoidalCategory.dite_tensor, CategoryTheory.MonObj.pow_comp, CategoryTheory.StrictPseudofunctor.id_map, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.CountableCategory.instCountableHomObjAsType, CategoryTheory.ShortComplex.HomologyMapData.neg_right, CategoryTheory.Pseudofunctor.map₂_associator, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.ShortComplex.homologyι_comp_fromOpcycles, CategoryTheory.Bicategory.conjugateEquiv_associator_hom, CategoryTheory.Bicategory.Prod.swap_obj, CategoryTheory.epi_from_simple_zero_of_not_iso, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.Free.lift_map_single, CategoryTheory.Idempotents.Karoubi.zsmul_hom, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, CategoryTheory.Abelian.coimage.comp_π_eq_zero, CategoryTheory.Join.opEquiv_inverse_map_edge_op, CategoryTheory.ObjectProperty.homMk_surjective, CategoryTheory.PrelaxFunctor.map₂_hom_inv_isIso, CategoryTheory.Functor.curryingFlipEquiv_apply_map, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, CategoryTheory.Limits.zero_of_target_iso_zero, CategoryTheory.ShortComplex.Homotopy.add_h₂, CategoryTheory.yonedaGrpObj_obj_coe, CategoryTheory.conjugateEquiv_id, CategoryTheory.Functor.mapAddHom_apply, CategoryTheory.Abelian.Ext.smul_eq_comp_mk₀, CategoryTheory.ShortComplex.Splitting.r_f, CategoryTheory.Bicategory.Pith.inclusion_mapId, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, CochainComplex.ConnectData.shape, CategoryTheory.Triangulated.TStructure.zero', CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, AlgebraicGeometry.tilde.map_add, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, Action.FintypeCat.quotientToQuotientOfLE_hom_mk, CategoryTheory.IsPullback.zero_right, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.mappingCone.desc_f, CochainComplex.mappingCone.d_fst_v'_assoc, CategoryTheory.StrictPseudofunctor.id_mapId_hom, Bicategory.Opposite.op2_leftUnitor_inv, CategoryTheory.Bicategory.InducedBicategory.Hom.category_comp_hom, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.Bicategory.Prod.fst_map, SSet.stdSimplex.ofSimplex_yonedaEquiv_δ, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, CategoryTheory.Bicategory.Adj.Hom₂.conjugateEquiv_τl, AlgebraicTopology.DoldKan.σ_comp_PInfty, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_iso_inv, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_inv, CategoryTheory.WithTerminal.liftFromOver_obj_map, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CategoryTheory.Bicategory.eqToHom_whiskerRight, CategoryTheory.Bicategory.Adj.associator_inv_τl, CategoryTheory.Bicategory.prod_comp_snd, CategoryTheory.Preadditive.comp_add, LightCondensed.ihom_map_val_app, CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_app_assoc, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.Abelian.Ext.addEquiv₀_symm_apply, CategoryTheory.ShortComplex.Homotopy.eq_add_nullHomotopic, CategoryTheory.Limits.kernelZeroIsoSource_hom, CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage, CategoryTheory.Presheaf.isLocallySurjective_toPlus, dNext_eq_dFrom_fromNext, CategoryTheory.Preadditive.sum_comp'_assoc, CochainComplex.mappingCone.inl_v_d, CategoryTheory.Linear.homCongr_symm_apply, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp', CategoryTheory.Pretriangulated.contractibleTriangle_mor₃, CategoryTheory.ShortComplex.Homotopy.comp_h₀, CategoryTheory.Adjunction.homAddEquiv_neg, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Bicategory.Pith.comp₂_iso_hom, CategoryTheory.Limits.biproduct.desc_eq, CategoryTheory.Bicategory.lanLiftUnit_desc, CategoryTheory.Bicategory.leftUnitor_naturality_assoc, CategoryTheory.Bicategory.conjugateEquiv_id, CategoryTheory.Lax.StrongTrans.id_naturality_hom, CategoryTheory.Functor.IsStronglyCartesian.universal_property, CategoryTheory.Adjunction.homEquiv_symm_id, CategoryTheory.isIso_iff_yoneda_map_bijective, CategoryTheory.TwistShiftData.shiftFunctorAdd'_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_map, CategoryTheory.Bicategory.whisker_assoc, CategoryTheory.wideSubcategoryInclusion.map, CategoryTheory.Lax.OplaxTrans.naturality_id, CategoryTheory.comp_ite, CategoryTheory.ShortComplex.ShortExact.δ_comp, CategoryTheory.Subgroupoid.coe_inv_coe, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₃, CategoryTheory.SemiCartesianMonoidalCategory.default_eq_toUnit, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.ShortComplex.HomologyMapData.smul_right, CategoryTheory.Limits.biprod.lift_desc_assoc, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.ShiftedHom.opEquiv'_symm_comp, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CategoryTheory.PreOneHypercover.sieve₁_apply, SimplicialObject.Splitting.IndexSet.epiComp_snd_coe, CategoryTheory.Limits.CokernelCofork.map_π, CategoryTheory.Bicategory.Adj.comp_τr, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans_app, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φK, FintypeCat.inv_hom_id_apply, CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso_hom, CategoryTheory.Adjunction.homEquiv_naturality_left_square_iff, CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary_assoc, HomologicalComplex.homologyι_descOpcycles_eq_zero_of_boundary_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, ModuleCat.hom_zsmul, CategoryTheory.Preadditive.inv_def, CategoryTheory.Endofunctor.Coalgebra.ext_iff, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, CategoryTheory.Adjunction.homEquiv_naturality_right_symm, CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify, ChainComplex.linearYonedaObj_d, CategoryTheory.ShortComplex.Homotopy.symm_h₂, Action.zsmul_hom, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.Mon_Class.one_comp, CategoryTheory.Preadditive.neg_comp, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Bicategory.conjugateEquiv_symm_iso, CategoryTheory.Bicategory.InducedBicategory.isoMk_inv_hom, Compactum.str_hom_commute, Homotopy.smul_hom, Homotopy.prevD_zero_cochainComplex, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, CategoryTheory.Bicategory.Prod.sectR_mapComp_hom, CategoryTheory.Limits.MonoFactorisation.kernel_ι_comp, CategoryTheory.HomOrthogonal.eq_zero, CategoryTheory.StrictPseudofunctor.mapComp_eq_eqToIso, CategoryTheory.Pretriangulated.Triangle.add_hom₁, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_map, CategoryTheory.PrelaxFunctor.map₂_comp_assoc, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CategoryTheory.Limits.biproduct.toSubtype_eq_desc, CategoryTheory.LaxFunctor.mapComp_naturality_right, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm, CategoryTheory.Functor.FullyFaithful.homNatIso'_inv_app_down, CategoryTheory.Mat.add_apply, CategoryTheory.Preadditive.mul_def, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.ShortComplex.Homotopy.sub_h₂, CategoryTheory.Abelian.Ext.mk₀_eq_zero_iff, CategoryTheory.congrArg_cast_hom_left, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_as_app, CategoryTheory.StrictPseudofunctorPreCore.map₂_whisker_left, Rep.invariantsAdjunction_homEquiv_apply_hom, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_left_addition, CategoryTheory.Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, CategoryTheory.Bicategory.associatorNatIsoRight_hom_app, CategoryTheory.Limits.Bicone.ofColimitCocone_π, CategoryTheory.Bicategory.Adj.lIso_inv, CategoryTheory.Bicategory.instIsIsoHomRightZigzagHom, CategoryTheory.yonedaEquiv_naturality, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, CategoryTheory.Adjunction.homEquiv_apply, CategoryTheory.Abelian.preadditiveCoyonedaObj_map_surjective, CategoryTheory.MonoidalLinear.smul_whiskerRight, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CategoryTheory.Subgroupoid.inv_mem_iff, CategoryTheory.Mat_.comp_apply, CategoryTheory.WithTerminal.pseudofunctor_mapId, CategoryTheory.kernelCokernelCompSequence.φ_π, CategoryTheory.PreGaloisCategory.evaluation_aut_surjective_of_isGalois, HomologicalComplex₂.ιTotal_totalFlipIso_f_hom, SimplicialObject.Split.natTransCofanInj_app, CategoryTheory.MonoidalLinear.whiskerLeft_smul, CategoryTheory.Bicategory.associator_inv_congr, CategoryTheory.Bicategory.inv_whiskerLeft, CochainComplex.ConnectData.d₀_comp_assoc, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackId_hom, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_app, ModuleCat.Hom.hom₂_apply, ChainComplex.fromSingle₀Equiv_apply, CochainComplex.mappingCone.d_fst_v', CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.ShortComplex.LeftHomologyMapData.neg_φK, TopModuleCat.hom_smul, CategoryTheory.NonPreadditiveAbelian.add_comm, CondensedMod.epi_iff_locallySurjective_on_compHaus, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_map, CategoryTheory.Pseudofunctor.id_mapComp, CategoryTheory.Limits.isoZeroOfEpiZero_inv, CategoryTheory.StrictPseudofunctor.mk'_map₂, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.Functor.toPseudoFunctor'_mapId, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_symm_apply, SemiNormedGrp.hom_zero, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, CategoryTheory.Iso.op2_inv_unop2, CategoryTheory.Limits.kernel.condition_assoc, CategoryTheory.GrpObj.comp_inv_assoc, CategoryTheory.PrelaxFunctor.map₂_isIso, CategoryTheory.types_hom, CategoryTheory.IsKernelPair.pullback, CategoryTheory.Bicategory.mateEquiv_leftUnitor_hom_rightUnitor_inv, CategoryTheory.Bicategory.LeftExtension.whisker_unit, CategoryTheory.Bicategory.conjugateEquiv_mateEquiv_vcomp, CategoryTheory.LaxFunctor.map₂_rightUnitor_app, Homotopy.comm, CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_symm_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackComp_inv, CategoryTheory.ActionCategory.id_val, CategoryTheory.ShortComplex.Homotopy.trans_h₁, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality, HomologicalComplex.mapBifunctor.d₁_eq', CategoryTheory.Limits.cokernelBiprodInlIso_hom, CategoryTheory.Iso.homCongr_symm_apply, CategoryTheory.yonedaCommGrpGrp_map_app, CategoryTheory.StrictPseudofunctor.comp_map₂, CategoryTheory.Bicategory.prod_homCategory_id_snd, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.ShortComplex.Homotopy.comm₂, CategoryTheory.Limits.biproduct.ι_π, HomologicalComplex.d_comp_d, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp_assoc, CategoryTheory.PreZeroHypercover.sumLift_h₀, ChainComplex.mk_congr_succ_d₂, CommRingCat.HomTopology.isHomeomorph_precomp, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, CategoryTheory.Bicategory.Adj.Bicategory.associator_hom_τr, SSet.S.le_iff_nonempty_hom, CategoryTheory.Bicategory.InducedBicategory.forget_map₂, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app_assoc, CategoryTheory.Abelian.image.ι_comp_eq_zero, TopCat.Presheaf.isGluing_iff_pairwise, CategoryTheory.GrpObj.comp_div_assoc, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, Bicategory.Opposite.bicategory_homCategory_id_unop2, CategoryTheory.IsPushout.of_hasBinaryBiproduct, CategoryTheory.Bicategory.associatorNatIsoLeft_hom_app, HomologicalComplex.mapBifunctor.d₂_eq_zero, CategoryTheory.ShortComplex.Splitting.s_r, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_fst, ChainComplex.chainComplex_d_succ_succ_zero, CategoryTheory.MonoidalCategory.rightAssocTensor_map, CategoryTheory.Subgroupoid.mem_full_iff, CategoryTheory.Bicategory.LeftLift.whiskerIdCancel_right, CategoryTheory.TwistShiftData.shiftFunctorAdd'_hom_app, CategoryTheory.PrelaxFunctor.comp_toPrelaxFunctorStruct, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right, CategoryTheory.MonoidalClosed.curryHomEquiv'_symm_apply, CategoryTheory.ShortComplex.sub_τ₃, CategoryTheory.PrelaxFunctor.map₂_inv_hom_assoc, CategoryTheory.Limits.Pi.ι_π_of_ne_assoc, CategoryTheory.PreGaloisCategory.PointedGaloisObject.Hom.comp, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.map_yonedaEquiv, Homotopy.comp_hom, CategoryTheory.Oplax.StrongTrans.isoMk_inv_as_app, CategoryTheory.CatEnrichedOrdinary.hComp_assoc, CategoryTheory.Bicategory.Prod.fst_mapComp_inv, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, dNext_eq, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', CategoryTheory.Oplax.StrongTrans.Modification.naturality, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.op_zsmul, CategoryTheory.Sieve.natTransOfLe_app_coe, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv, CategoryTheory.eHomEquiv_comp, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, CategoryTheory.sum.inlCompInverseAssociator_inv_app_down_down, CochainComplex.shiftFunctor_obj_d', CategoryTheory.Pretriangulated.Triangle.smul_hom₃, CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois_symm_fiber, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_comp, CategoryTheory.Hom.one_def, CategoryTheory.NonPreadditiveAbelian.neg_sub, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp_assoc, CategoryTheory.Limits.BinaryCofan.IsColimit.desc'_coe, groupCohomology.mapShortComplexH1_zero, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.FunctorToTypes.binaryProductCone_π_app, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.NonPreadditiveAbelian.comp_add, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.conjugateIsoEquiv_apply_hom, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_iff_epi₃, CategoryTheory.Bicategory.Adj.associator_hom_τr, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom, Bicategory.Opposite.unop2_id, AlgebraicTopology.DoldKan.N₂_obj_X_d, CategoryTheory.Limits.WalkingMultispan.instIsEmptyHomRightLeft, CategoryTheory.BicartesianSq.of_is_biproduct₂, ModuleCat.homLinearEquiv_apply, CategoryTheory.Limits.Multifork.ofι_π_app, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.ShortComplex.RightHomologyMapData.add_φH, CochainComplex.HomComplex.Cocycle.equivHom_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, CategoryTheory.Pi.sum_map_app, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app, CategoryTheory.Triangulated.instNonemptyOctahedron, CategoryTheory.Pretriangulated.Triangle.sub_hom₃, AlgebraicGeometry.AffineSpace.homOverEquiv_apply, CategoryTheory.ShortComplex.rightHomologyMap_neg, CategoryTheory.Bicategory.prod_leftUnitor_hom_fst, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Limits.pullbackZeroZeroIso_inv_snd, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.CommSq.instHasLift_1, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app_assoc, CategoryTheory.Limits.biproduct.lift_eq, CategoryTheory.BicartesianSq.of_has_biproduct₁, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, Rep.homEquiv_symm_apply_hom, HomotopicalAlgebra.LeftHomotopyRel.equivalence, CategoryTheory.Grp_Class.inv_eq_inv, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, GrpCat.ofHom_injective, CategoryTheory.conjugateIsoEquiv_apply_inv, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f, HomologicalComplex.mapBifunctor₂₃.d_eq, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τl, CategoryTheory.WithInitial.liftFromUnderComp_hom_app, CategoryTheory.Bicategory.whiskerLeft_rightUnitor_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φQ, CategoryTheory.Limits.kernelZeroIsoSource_inv, CategoryTheory.Bicategory.Adjunction.comp_left_triangle_aux, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, CategoryTheory.Bicategory.whiskerLeft_hom_inv_whiskerRight, CategoryTheory.Limits.BinaryBicone.toBiconeFunctor_obj_ι, CategoryTheory.yonedaEvaluation_map_down, CategoryTheory.CartesianClosed.uncurry_injective, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_fst, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Iso.homToEquiv_symm_apply, CategoryTheory.PreGaloisCategory.surjective_of_nonempty_fiber_of_isConnected, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.unitCompPartialBijective_symm_natural, CategoryTheory.NatTrans.app_smul, CategoryTheory.FunctorToTypes.binaryCoproductCocone_ι_app, CategoryTheory.Subgroupoid.mem_iff, CategoryTheory.Functor.sectionsEquivHom_apply_app, CochainComplex.cm5b.I_d, CategoryTheory.Functor.toPseudoFunctor'_mapComp, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, CategoryTheory.ShortComplex.Homotopy.ofEq_h₁, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.IsPullback.of_isBilimit, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', CategoryTheory.StrictlyUnitaryPseudofunctor.map_id, CategoryTheory.Iso.homFromEquiv_apply, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, groupHomology.d₁₀_eq_zero_of_isTrivial, CategoryTheory.PreGaloisCategory.mulAction_naturality, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.prodOpEquiv_functor_map, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial_hom, Bicategory.Opposite.bicategory_homCategory_comp_unop2, CategoryTheory.GrpObj.comp_inv, HomologicalComplex.homotopyCofiber.inlX_d_assoc, CategoryTheory.Limits.kernelBiprodSndIso_inv, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_π_apply, groupCohomology.d₀₁_comp_d₁₂_assoc, CategoryTheory.LocallyDiscrete.mkPseudofunctor_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom, CategoryTheory.Functor.prod'_η_fst, CategoryTheory.Limits.inl_pushoutZeroZeroIso_inv, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_iff_mono₂, CategoryTheory.MonoidalClosed.homEquiv_apply_eq, CategoryTheory.Limits.coneOfSectionCompCoyoneda_π, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_comp, CategoryTheory.conjugateEquiv_whiskerLeft, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, SSet.OneTruncation₂.reflQuiver_Hom, AlgebraicGeometry.tilde.map_zero, CategoryTheory.Iso.homCongr_symm, HomologicalComplex.homotopyCofiber.desc_f, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_comp, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CochainComplex.ConnectData.comp_d₀, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down, CategoryTheory.Free.lift_map, Hom.cast_eq_cast, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly, Opens.mayerVietorisSquare'_toSquare, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_apply, CategoryTheory.WithInitial.liftFromUnder_map_app, HomologicalComplex.ι_mapBifunctorFlipIso_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.Bicategory.id_whiskerLeft, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, CategoryTheory.conjugateIsoEquiv_symm_apply_inv, CategoryTheory.ShortComplex.rightHomologyMap'_neg, CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_snd, CategoryTheory.SimplicialObject.cechNerveEquiv_apply, MonObj.mopMonObj_one_unmop, CategoryTheory.Bicategory.Pith.associator_inv_iso_hom, CategoryTheory.Bicategory.whiskerLeft_hom_inv_whiskerRight_assoc, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, Opens.coe_mayerVietorisSquare_X₄, CategoryTheory.Pseudofunctor.mapComp_id_left_hom, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, ContinuousCohomology.MultiInd.d_comp_d, CategoryTheory.MonoidalPreadditive.zero_whiskerRight, CategoryTheory.Bicategory.prod_associator_inv_snd, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.OplaxFunctor.id_mapId, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Functor.map_neg, CategoryTheory.Idempotents.DoldKan.Γ_map_app, CommGrpCat.one_apply, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.Functor.homMonoidHom_apply, CategoryTheory.Limits.KernelFork.map_condition, CategoryTheory.Abelian.Ext.mk₀_linearEquiv₀_apply, groupHomology.d₃₂_comp_d₂₁, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CategoryTheory.Pseudofunctor.map₂_whisker_left_app, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Adjunction.homEquiv_naturality_left_symm, HomologicalComplex.opcyclesToCycles_homologyπ_assoc, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_rightUnitor, CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_π_apply, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, Prefunctor.costar_snd, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.biprod.add_eq_lift_id_desc, CategoryTheory.PreGaloisCategory.IsNaturalSMul.naturality, CategoryTheory.StrictlyUnitaryLaxFunctor.ext_iff, CategoryTheory.Bicategory.Prod.snd_mapComp_hom, CochainComplex.mappingCone.inl_v_descShortComplex_f, CategoryTheory.Groupoid.isoEquivHom_symm_apply_inv, AlgebraicGeometry.SpecToEquivOfLocalRing_symm_apply, CategoryTheory.prodOpEquiv_counitIso_hom_app, CategoryTheory.Bicategory.leftUnitor_hom_congr, CategoryTheory.Subgroupoid.subset_generated, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Limits.Sigma.ι_π_of_ne, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Limits.FintypeCat.jointly_surjective, AlgebraicGeometry.Scheme.Hom.stalkMap_congr, CategoryTheory.ActionCategory.homOfPair.val, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_hom, CategoryTheory.ShortComplex.Splitting.r_f_assoc, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, CategoryTheory.Sieve.functor_map_coe, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, HomologicalComplex.mapBifunctor₁₂.d₁_eq_zero, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_ε, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.Presheaf.freeYonedaHomEquiv_comp_assoc, CategoryTheory.Subgroupoid.mem_im_iff, CategoryTheory.coyonedaPairing_map, CategoryTheory.Bicategory.Adj.leftUnitor_inv_τr, CategoryTheory.IsPushout.zero_right, CategoryTheory.Adjunction.homEquiv_counit, CategoryTheory.leftDistributor_inv, CategoryTheory.Bicategory.whiskerRight_isIso, CochainComplex.HomComplex.Cochain.ofHom_add, CategoryTheory.Limits.ker.condition_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.Pretriangulated.Triangle.sub_hom₂, CategoryTheory.Linear.instEpiHSMulHomOfInvertible, SemiNormedGrp.comp_explicitCokernelπ_assoc, CategoryTheory.PrelaxFunctor.map₂_id, CategoryTheory.Bicategory.rightUnitor_inv_naturality_assoc, CategoryTheory.Localization.Preadditive.add'_zero, CategoryTheory.Limits.coprod.inr_fst, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, HomologicalComplex.mapBifunctor.d₂_eq_zero', CategoryTheory.Limits.zero_app, CategoryTheory.Functor.map_injective, CategoryTheory.Limits.isoZeroOfMonoZero_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.Oplax.OplaxTrans.isoMk_inv_as_app, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_map, CategoryTheory.StrictPseudofunctor.mk''_mapComp, CategoryTheory.ShiftedHom.opEquiv'_apply, CochainComplex.toSingle₀Equiv_apply, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁_assoc, CategoryTheory.OplaxFunctor.map₂_leftUnitor_app_assoc, CategoryTheory.Limits.BinaryBicone.fstKernelFork_ι, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, CategoryTheory.Functor.toOplaxFunctor_mapId, CategoryTheory.Prod.fac', Rep.leftRegularHomEquiv_apply, SSet.stdSimplex.mem_nonDegenerate_iff_mono, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero, CategoryTheory.sum.inlCompInlCompAssociator_hom_app_down, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.IsPushout.hom_eq_add_up_to_refinements, CategoryTheory.BicategoricalCoherence.assoc_iso, groupHomology.chainsMap_zero, CochainComplex.HomComplex.Cochain.single_v_eq_zero', CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Bicategory.Comonad.comul_assoc_assoc, CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.Presheaf.coconeOfRepresentable_ι_app, CategoryTheory.Preadditive.comp_nsmul, HomologicalComplex.homologyι_opcyclesToCycles, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_of_epi₃, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Preadditive.forkOfKernelFork_ι, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_assoc, CategoryTheory.Mat_.id_apply, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm_assoc, CategoryTheory.Bicategory.Pith.leftUnitor_hom_iso, CategoryTheory.WithInitial.lift_map, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, CategoryTheory.Bicategory.instHasInitialLeftLiftOfHasLeftKanLift, CochainComplex.HomComplex.Cochain.ofHom_zero, AlgebraicGeometry.Scheme.IsLocallyDirected.exists_of_pullback_V_V, HomologicalComplex.mapBifunctor.d₂_eq', CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, CategoryTheory.conjugateEquiv_adjunction_id_symm, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, GrpCat.one_apply, Mathlib.Tactic.BicategoryCoherence.assoc_liftHom₂, CategoryTheory.hasExt_iff, CategoryTheory.Bicategory.lanUnit_desc_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_naturality, CategoryTheory.Bicategory.associator_naturality_left, CategoryTheory.CategoryOfElements.id_val, TopologicalSpace.Opens.apply_mk, CochainComplex.cochainComplex_d_succ_succ_zero, CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_inv_hom_assoc, TopologicalSpace.Opens.infLELeft_apply, CategoryTheory.ShrinkHoms.comp_def, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.Abelian.tfae_mono, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, prevD_comp_right, CategoryTheory.Bicategory.Pith.rightUnitor_inv_iso_hom, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, CategoryTheory.Bicategory.Pith.comp₂_iso_inv_assoc, CategoryTheory.ShortComplex.Homotopy.g_h₃, CategoryTheory.IsPushout.of_has_biproduct, SSet.yonedaEquiv_comp, CategoryTheory.MonoidalOpposite.tensorLeftIso_hom_app_unmop, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map₂, CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier, CategoryTheory.Abelian.Ext.mk₀_bijective, CategoryTheory.Preadditive.isCoseparator_iff, SimplicialObject.Splitting.IndexSet.eqId_iff_eq, CategoryTheory.ObjectProperty.isColocal.homEquiv_apply, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, CategoryTheory.Limits.Types.Pushout.cocone_ι_app, CategoryTheory.Bicategory.prod_homCategory_comp_snd, CategoryTheory.Functor.prod_μ_snd, HomologicalComplex₂.total_d, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, CategoryTheory.Limits.KernelFork.map_ι, CategoryTheory.MarkovCategory.instSubsingletonHomTensorUnit, CategoryTheory.Oplax.StrongTrans.id_naturality_hom, CategoryTheory.Bicategory.leftUnitor_naturality, CategoryTheory.Limits.zero_comp, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, CategoryTheory.Localization.hasSmallLocalizedShiftedHom_iff, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_id_hom, CategoryTheory.CatEnrichedOrdinary.id_hComp_id, CategoryTheory.OverPresheafAux.MakesOverArrow.of_arrow, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_mapId, CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveTypeHom, CategoryTheory.Bicategory.Adj.Bicategory.associator_inv_τr, SSet.OneTruncation₂.nerveHomEquiv_apply, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, FintypeCat.uSwitchEquiv_symm_naturality, CategoryTheory.MonoOver.initialTo_b_eq_zero, CategoryTheory.Pretriangulated.Triangle.isZero₃_iff, CategoryTheory.ShrinkHoms.inverse_map, CategoryTheory.WithTerminal.liftFromOverComp_inv_app, CategoryTheory.Monad.algebraPreadditive_homGroup_neg_f, HomologicalComplex.mapBifunctor.d₁_eq_zero', CategoryTheory.WithInitial.liftToInitial_map, CategoryTheory.ShortComplex.Homotopy.comp_h₂, CategoryTheory.ShortComplex.Homotopy.ofEq_h₃, AlgebraicGeometry.Scheme.Hom.stalkMap_congr_assoc, CategoryTheory.LaxFunctor.mapComp_assoc_left, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τl, CategoryTheory.Limits.reflexivePair.compRightIso_inv_app, CategoryTheory.Bicategory.Comonad.counit_comul, ModuleCat.ofHom₂_hom_apply_hom, CategoryTheory.unop_zsmul, SheafOfModules.conjugateEquiv_pullbackId_hom, CategoryTheory.Sheaf.Hom.add_app, CategoryTheory.PreGaloisCategory.endEquivAutGalois_π, CategoryTheory.ActionCategory.π_map, CategoryTheory.CatEnriched.eqToHom_hComp_eqToHom, CategoryTheory.Prod.swap_map, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_inv_iso_hom, CategoryTheory.NatTrans.app_units_zsmul, CategoryTheory.ShortComplex.cyclesMap'_add, CategoryTheory.Presieve.extension_iff_amalgamation, groupCohomology.subtype_comp_d₀₁, CategoryTheory.OplaxFunctor.map₂_rightUnitor_app, CategoryTheory.prod_comp, CategoryTheory.CatEnrichedOrdinary.eqToHom_hComp_eqToHom, CategoryTheory.Subgroupoid.mem_top, CategoryTheory.NonPreadditiveAbelian.diag_σ_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_right_unitor, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.Cat.Hom.toNatTrans_comp, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.MonoidalClosed.curryHomEquiv'_apply, CategoryTheory.LaxFunctor.mapComp_assoc_right, CategoryTheory.Limits.biproduct.ι_toSubtype, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, CochainComplex.mappingCone.inl_v_snd_v, CategoryTheory.Discrete.sumEquiv_functor_map, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_mk, CategoryTheory.Bicategory.mateEquiv_apply, CategoryTheory.whiskerLeft_sum, CategoryTheory.Bicategory.Adj.associator_hom_τl, CategoryTheory.Types.instReflectsColimitsOfSizeForgetTypeHom, CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors_toPrefunctor_map, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapComp, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_hom_hom, CategoryTheory.eHomEquiv_comp_assoc, CategoryTheory.Oplax.StrongTrans.naturality_naturality, CategoryTheory.ShortComplex.RightHomologyData.ι_descQ_eq_zero_of_boundary, CategoryTheory.ShortComplex.neg_τ₁, CategoryTheory.MonoidalOpposite.tensorRightMopIso_hom_app_unmop, CategoryTheory.Under.opEquivOpOver_counitIso, HomologicalComplex.unit_tensor_d₁, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.Bicategory.pentagon_hom_hom_inv_inv_hom, CategoryTheory.Limits.IsZero.eq_zero_of_src, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_rightAdd, CategoryTheory.PrelaxFunctor.map₂Iso_hom, ModuleCat.hom_sub, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.add_φK, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition'_assoc, CategoryTheory.NonPreadditiveAbelian.sub_def, CategoryTheory.DifferentialObject.d_squared_assoc, CategoryTheory.conjugateEquiv_adjunction_id, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom_op, CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_as_app, CategoryTheory.Limits.biproduct.ι_toSubtype_assoc, CategoryTheory.Functor.final_iff_of_isFiltered, CategoryTheory.coyonedaEquiv_symm_map, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Adjunction.homEquiv_naturality_right_square, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.rightDistributor_hom, ModuleCat.ofHom₂_compr₂, CategoryTheory.PrelaxFunctor.map₂Iso_inv, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_map, starEquivCostar_symm_apply_snd, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, CategoryTheory.Bicategory.Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal_inv, CategoryTheory.ShortComplex.Homotopy.neg_h₂, CategoryTheory.Limits.SequentialProduct.cone_π_app, PresheafOfModules.freeYonedaEquiv_comp, AlgebraicGeometry.ΓSpec_adjunction_homEquiv_eq, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_assoc, CochainComplex.ConnectData.comp_d₀_assoc, CategoryTheory.MonoidalPreadditive.tensor_add, Bicategory.Opposite.bicategory_associator_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_assoc, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.finrank_endomorphism_simple_eq_one, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, CategoryTheory.ShortComplex.HasRightHomology.of_zeros, CategoryTheory.Limits.IsZero.iff_id_eq_zero, AlgebraicGeometry.Scheme.Modules.pushforwardCongr_inv_app_app, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, HomologicalComplex₂.d₂_eq', CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.ShortComplex.zero_τ₁, CategoryTheory.IsFiltered.sup_objs_exists, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_p, CategoryTheory.Bicategory.pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.ShortComplex.smul_τ₁, CategoryTheory.Limits.cokernel.π_of_epi, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr_hom_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.OplaxFunctor.mapComp_id_left_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapId, FintypeCat.hom_inv_id_apply, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_of_mono₁, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₂, CategoryTheory.Limits.coequalizer.existsUnique, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, Homotopy.dNext_cochainComplex, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, Homotopy.nullHomotopicMap'_f, CategoryTheory.Bicategory.Prod.swap_mapComp_hom, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, CategoryTheory.Enriched.FunctorCategory.homEquiv_comp_assoc, CategoryTheory.Presieve.uncurry_pullbackArrows, CategoryTheory.Pseudofunctor.StrongTrans.Modification.vcomp_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.CatEnrichedOrdinary.hComp_assoc_heq, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_assoc, CategoryTheory.Bicategory.LeftLift.ofIdComp_left_as, CategoryTheory.StrictPseudofunctor.id_mapId_inv, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_apply_app, CategoryTheory.ShortComplex.exact_iff_of_forks, SingleObj.pathEquivList_cons, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, PresheafOfModules.sheafificationAdjunction_homEquiv_apply, CategoryTheory.Adjunction.representableBy_homEquiv, CategoryTheory.Functor.Elements.initialOfRepresentableBy_snd, CategoryTheory.Functor.PreservesHomology.preservesCokernel, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_one, Prefunctor.IsCovering.map_injective, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, CategoryTheory.Functor.CorepresentableBy.ext_iff, CategoryTheory.ShortComplex.smul_τ₂, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.Limits.BinaryBicone.inl_snd, CategoryTheory.Functor.CorepresentableBy.homEquiv_symm_comp, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_inv, CategoryTheory.Abelian.Ext.linearEquiv₀_symm_apply, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_as, CategoryTheory.FreeBicategory.mk_associator_inv, CategoryTheory.ShiftedHom.mk₀_neg, CategoryTheory.Join.mapIsoWhiskerLeft_inv_app, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_left, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Functor.toPreimages_obj, CategoryTheory.ShortComplex.liftCycles_homologyπ_eq_zero_of_boundary, CategoryTheory.Bicategory.rightUnitor_comp_assoc, CategoryTheory.HomOrthogonal.matrixDecomposition_symm_apply, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.NonPreadditiveAbelian.lift_map, CategoryTheory.FreeBicategory.locally_thin, CategoryTheory.Functor.homEquivOfIsRightKanExtension_apply_app, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, Mathlib.Tactic.Bicategory.evalComp_nil_cons, Rep.diagonalHomEquiv_apply, CategoryTheory.Limits.IsLimit.homEquiv_symm_naturality, HomologicalComplex.homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.Bicategory.Adj.leftUnitor_hom_τr, CategoryTheory.Pseudofunctor.mapId'_hom_naturality, CategoryTheory.IsDiscrete.subsingleton, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.conjugateIsoEquiv_symm_apply_hom, CategoryTheory.HomOrthogonal.matrixDecompositionAddEquiv_apply, Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of, CategoryTheory.Limits.IsZero.iff_isSplitMono_eq_zero, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f, dNext_comp_right, HomologicalComplex.homotopyCofiber.inlX_desc_f, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, CategoryTheory.Limits.Cotrident.ofπ_ι_app, CategoryTheory.Bicategory.LeftExtension.IsKan.fac, TopologicalSpace.Opens.apply_def, HomologicalComplex.fromOpcycles_d, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.conj_eqToHom_iff_heq, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.Adjunction.homAddEquiv_apply, HomologicalComplex.iCycles_d_assoc, CategoryTheory.Limits.op_zero, CategoryTheory.Functor.linear_iff, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft_op, HomotopyCategory.quotient_map_out, CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Limits.coconeOfIsSplitEpi_ι_app, SheafOfModules.Presentation.IsFinite.finite_relations, SemimoduleCat.hom_add, LightProfinite.proj_comp_transitionMapLE, CategoryTheory.FreeBicategory.lift_mapComp, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃, CategoryTheory.ShortComplex.Homotopy.add_h₃, HomologicalComplex₂.d₁_eq', CategoryTheory.Bicategory.Comonad.comul_counit, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f, Rep.freeLiftLEquiv_symm_apply, CategoryTheory.ObjectProperty.rightOrthogonal_iff, CategoryTheory.Preadditive.one_def, CategoryTheory.Over.lift_left, CategoryTheory.Bicategory.leftZigzagIso_inv, CategoryTheory.Functor.toOplaxFunctor'_mapComp, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_id, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_iff_mono₃, CategoryTheory.Mat_.id_def, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Bicategory.Adjunction.comp_right_triangle_aux, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app_eq_sum, CategoryTheory.ShortComplex.cyclesMap'_neg, CategoryTheory.DifferentialObject.d_squared_apply_assoc, CategoryTheory.Limits.biproduct.toSubtype_fromSubtype_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, CategoryTheory.Adjunction.homEquiv_naturality_right_square_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, groupHomology.d₁₀_comp_coinvariantsMk_assoc, CategoryTheory.op_neg, CategoryTheory.Limits.CokernelCofork.map_condition_assoc, CategoryTheory.unitCompPartialBijectiveAux_symm_apply, CategoryTheory.Bicategory.Adj.lIso_hom, AlgebraicTopology.DoldKan.decomposition_Q, CategoryTheory.Limits.hasPullback_over_zero, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_ι, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, HomologicalComplex.extendMap_zero, HomologicalComplex.extendMap_f_eq_zero, CategoryTheory.isCardinalFiltered_iff, CategoryTheory.Bicategory.Prod.sectL_map₂, Prefunctor.symmetrify_map, CategoryTheory.Oplax.StrongTrans.toOplax_naturality, CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc, CategoryTheory.ShortComplex.opcyclesMap'_add, CategoryTheory.ShortComplex.Exact.isZero_X₂_iff, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.prod_id_snd, CategoryTheory.instSmallHomFunctorOppositeTypeColimitCompYoneda, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, CategoryTheory.Bicategory.Adjunction.homEquiv₁_symm_apply, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Bicategory.toNatTrans_conjugateEquiv, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.op_sub, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.ShortComplex.rightHomologyMap'_smul, CategoryTheory.NonPreadditiveAbelian.add_neg_cancel, HasFibers.inducedFunctor_map_coe, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Subobject.factors_zero, CategoryTheory.IsPullback.inr_fst', SSet.Truncated.HomotopyCategory.subsingleton_hom, CategoryTheory.Pseudofunctor.comp_mapComp, CategoryTheory.Sheaf.instIsLocallyInjectiveHomImageι, Prefunctor.star_snd, CategoryTheory.ComposableArrows.isoMk₀_hom_app, CategoryTheory.Bicategory.Prod.swap_mapComp_inv, homOfEq_heq_left_iff, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, CategoryTheory.PrelaxFunctor.map₂Iso_eqToIso, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Limits.Cofork.IsColimit.homIso_symm_apply, CategoryTheory.ShortComplex.LeftHomologyData.wi_assoc, CategoryTheory.Pretriangulated.Triangle.isZero₁_iff, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, CategoryTheory.Subgroupoid.id_mem_of_nonempty_isotropy, Bicategory.Opposite.opFunctor_map, CategoryTheory.Localization.SmallHom.equiv_shift, CategoryTheory.CartesianClosed.curry_injective, HomologicalComplex₂.ιTotalOrZero_eq_zero, HomologicalComplex.double_d_eq_zero₁, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapComp, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.uliftYonedaMap_app_apply, CategoryTheory.ShortComplex.Exact.epi_f_iff, CategoryTheory.Preadditive.zsmul_comp, HomologicalComplex.truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, CategoryTheory.subterminals_thin, CategoryTheory.Bicategory.LeftLift.whiskering_obj, Hom.unmop_inj, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, CategoryTheory.opEquiv_symm_apply, CategoryTheory.Limits.CokernelCofork.π_eq_zero, CategoryTheory.Limits.bicone_ι_π_ne, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, CategoryTheory.InducedWideCategory.category_comp_coe, CategoryTheory.congrArg_mpr_hom_right, CategoryTheory.ShrinkHoms.functor_map, CategoryTheory.ShortComplex.neg_τ₃, CategoryTheory.Bicategory.Prod.snd_mapComp_inv, CategoryTheory.Sieve.equalizer_eq_equalizerSieve, CategoryTheory.Bicategory.Adj.Bicategory.associator_hom_τl, CategoryTheory.NonPreadditiveAbelian.lift_σ, CategoryTheory.StrictPseudofunctor.mk''_obj, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, AlgebraicGeometry.SpecToEquivOfLocalRing_eq_iff, CategoryTheory.Bicategory.Pith.comp₂_iso_inv, CategoryTheory.Adjunction.homEquiv_symm_rightAdjointUniq_hom_app, CategoryTheory.Pseudofunctor.map₂_whisker_right_app, CategoryTheory.Abelian.Ext.homEquiv₀_symm_apply, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, CategoryTheory.Limits.WalkingMultispan.inclusionOfLinearOrder_map, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality, CategoryTheory.Bicategory.conjugateEquiv_symm_apply', CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, CategoryTheory.Limits.hasPushout_over_zero, CategoryTheory.cones_obj_obj, Rep.indResHomEquiv_apply_hom, CategoryTheory.NonPreadditiveAbelian.lift_σ_assoc, CategoryTheory.Functor.FullyFaithful.homNatIso_hom_app_down, CategoryTheory.NonPreadditiveAbelian.comp_sub, ModuleCat.homAddEquiv_apply, FreeGroupoid.congr_reverse_comp, CategoryTheory.Functor.PreOneHypercoverDenseData.sieve₁₀_apply, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Adjunction.homAddEquiv_symm_sub, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, HomologicalComplex₂.D₁_totalShift₂XIso_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, CategoryTheory.Bicategory.InducedBicategory.isoMk_hom_hom, CategoryTheory.Bicategory.Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Limits.Cofork.ofπ_ι_app, SkyscraperPresheafFunctor.map'_app, CategoryTheory.Bicategory.whiskerLeft_rightUnitor, Path.isChain_toList_nonempty, CategoryTheory.Limits.WalkingCospan.instSubsingletonHom, CategoryTheory.Functor.currying_functor_obj_map, CategoryTheory.yonedaGrp_map_app, CategoryTheory.comp_eqToHom_heq, CategoryTheory.Preadditive.comp_sub_assoc, AlgebraicGeometry.tilde.map_neg, CategoryTheory.Equalizer.FirstObj.ext_iff, HomologicalComplex.mapBifunctor₁₂.d₁_eq, AlgebraicTopology.DoldKan.Q_zero, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality, CategoryTheory.leftUnitor_def, CategoryTheory.Iso.eHomCongr_inv_comp, CategoryTheory.MonObj.one_eq_one, ChainComplex.mkHom_f_succ_succ, HomologicalComplex.opcyclesMap_zero, HomologicalComplex₂.D₂_totalShift₂XIso_hom, CategoryTheory.Limits.IsLimit.existsUnique, CategoryTheory.sheafHomSectionsEquiv_symm_apply_coe_apply, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp, CategoryTheory.Localization.homEquiv_map, CategoryTheory.FreeBicategory.preinclusion_obj, CategoryTheory.Pseudofunctor.map₂_left_unitor_app_assoc, imageToKernel_epi_of_epi_of_zero, CategoryTheory.CatEnriched.hComp_comp, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, CategoryTheory.ShortComplex.rightHomologyMap_smul, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.Pseudofunctor.map₂_right_unitor_app_assoc, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_inv, CategoryTheory.Grp_Class.div_comp, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv_def, CategoryTheory.Pseudofunctor.map₂_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.comp_mapComp, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_iff_mono₁, CategoryTheory.Join.opEquiv_functor_map_op_inclLeft, CategoryTheory.Abelian.Pseudoelement.eq_zero_iff, CategoryTheory.finallySmall_iff_exists_small_weakly_terminal_set, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, CategoryTheory.conjugateEquiv_comp, CategoryTheory.map_shrinkYonedaEquiv, CategoryTheory.NatTrans.app_zsmul, CategoryTheory.Mat_.comp_def, CategoryTheory.WithInitial.opEquiv_inverse_map, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, AddCommGrpCat.hom_add_apply, SingleObj.toPrefunctor_symm_apply, CategoryTheory.PrelaxFunctor.map₂_hom_inv_isIso_assoc, CategoryTheory.Biprod.inl_ofComponents, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, CategoryTheory.Limits.biproduct.map_eq, CategoryTheory.Preadditive.comp_sub, CategoryTheory.Limits.WalkingSpan.instSubsingletonHom, CategoryTheory.prod.leftUnitor_map, CategoryTheory.Adjunction.homEquiv_apply_eq, CategoryTheory.yonedaEquiv_symm_map, CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.Cat.Hom.equivFunctor_apply, CategoryTheory.Limits.BinaryBicone.inr_fst, CategoryTheory.Functor.map_nsmul, CategoryTheory.Limits.cokernelZeroIsoTarget_hom, AddCommGrpCat.ofHom_injective, DerivedCategory.HomologySequence.δ_comp_assoc, ContinuousCohomology.MultiInd.d_succ, CategoryTheory.Subgroupoid.inclusion_faithful, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_apply, ModuleCat.semilinearMapAddEquiv_symm_apply_apply, CategoryTheory.Limits.CokernelCofork.IsColimit.isZero_of_epi, CategoryTheory.Bicategory.Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Cat.Hom.toNatIso_inv, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_cocone, AlgebraicGeometry.Proj.res_apply, Rep.coinvariantsAdjunction_homEquiv_apply_hom, CategoryTheory.Sieve.toFunctor_app_coe, HomologicalComplex.mapBifunctor₁₂.d₃_eq, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.Join.mapIsoWhiskerLeft_hom_app, HomologicalComplex.biprod_inr_fst_f_assoc, CategoryTheory.PrelaxFunctor.map₂_inv_hom, CategoryTheory.GrothendieckTopology.map_yonedaEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τr, CategoryTheory.Subgroupoid.mem_sInf_arrows, CategoryTheory.Bicategory.conjugateEquiv_iso, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.effectiveEpi_iff_effectiveEpiFamily, CategoryTheory.Cat.HasLimits.homDiagram_obj, CategoryTheory.Sheaf.isLocallySurjective_iff_isIso, CategoryTheory.uliftCoyonedaEquiv_symm_map, CategoryTheory.Bicategory.Prod.sectR_mapId_hom, CategoryTheory.TwoSquare.lanBaseChange_app, MonObj.mopMonObj_mul_unmop, CategoryTheory.Functor.hcongr_hom, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π, CategoryTheory.NonPreadditiveAbelian.neg_def, CategoryTheory.Linear.toCatCenter_apply_app, CategoryTheory.OplaxFunctor.mapComp_naturality_right, CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso, AlgebraicGeometry.Scheme.IsLocallyDirected.homOfLE_tAux_assoc, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_map_base, CategoryTheory.yonedaEquiv_symm_naturality_left, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Bicategory.Prod.swap_mapId_hom, CategoryTheory.PreGaloisCategory.exists_galois_representative, CategoryTheory.CatCenter.app_neg, CategoryTheory.Over.isMonHom_pullbackFst_id_right, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', FundamentalGroupoidFunctor.prodToProdTop_map, TopModuleCat.kerι_comp, HomologicalComplex.homotopyCofiber.d_sndX_assoc, ModuleCat.hom_neg, FDRep.scalar_product_char_eq_finrank_equivariant, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_i, CategoryTheory.Bicategory.conjugateEquiv_whiskerLeft, Hom.toLoc_as, CategoryTheory.GrothendieckTopology.diagramNatTrans_zero, CondensedSet.epi_iff_locallySurjective_on_compHaus, CategoryTheory.Hom.mulEquivCongrRight_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_δ, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapId, dNext_nat, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁, CategoryTheory.LaxFunctor.map₂_associator_app, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.FreeBicategory.mk_right_unitor_hom, CategoryTheory.Bicategory.LeftExtension.whiskering_obj, CategoryTheory.Presheaf.instIsLocallyInjectiveHomιOpposite, CategoryTheory.Functor.map_dite, CategoryTheory.yonedaEquiv_symm_naturality_right, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc, SheafOfModules.pushforwardSections_unitHomEquiv, CategoryTheory.wideInducedFunctor_map, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, HomologicalComplex.extend.mapX_none, CategoryTheory.Prod.fst_map, CategoryTheory.Equalizer.Sieve.SecondObj.ext_iff, HomologicalComplex.neg_f_apply, CategoryTheory.Over.mapCongr_rfl, CategoryTheory.MonoidalCategory.prodMonoidal_tensorHom, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.Localization.SmallShiftedHom.equiv_apply, LightCondensed.instSmallHom, CategoryTheory.Limits.biproduct.ι_π_ne_assoc, CategoryTheory.StrictPseudofunctor.comp_obj, CategoryTheory.ShortComplex.leftHomologyMap_zero, Bicategory.Opposite.homCategory_id_unop2, CategoryTheory.Limits.cokernelZeroIsoTarget_inv, CategoryTheory.Grp.Hom.hom_one, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, CategoryTheory.StrictPseudofunctor.id_mapComp_inv, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm, CategoryTheory.Bicategory.InducedBicategory.mkHom_eqToHom, CategoryTheory.Bicategory.comp_whiskerLeft_symm_assoc, HomologicalComplex.shape, CategoryTheory.AsSmall.down_map, SSet.stdSimplex.objEquiv_symm_apply, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, AlgebraicGeometry.pointEquivClosedPoint_symm_apply_coe, Homotopy.refl_hom, CategoryTheory.Localization.HasSmallLocalizedHom.small, CategoryTheory.Localization.Preadditive.map_add, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_one_assoc, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_yonedaULift_map, SemimoduleCat.homLinearEquiv_symm_apply, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, CochainComplex.HomComplex.Cochain.ofHoms_zero, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_obj, CategoryTheory.uliftYonedaEquiv_symm_map_assoc, CategoryTheory.comp_dite, HomologicalComplex.mapBifunctor₁₂.d₂_eq, Representation.linHom.invariantsEquivRepHom_apply_hom, AlgebraicGeometry.PresheafedSpace.map_comp_c_app, TopCat.Presheaf.coveringOfPresieve_apply, CategoryTheory.Limits.WalkingMultispan.instSubsingletonHomLeft, Bicategory.Opposite.op2_id_unbop, CategoryTheory.isIso_prod_iff, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, CategoryTheory.ShortComplex.liftCycles_leftHomologyπ_eq_zero_of_boundary, CategoryTheory.Sieve.generate_apply, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, CategoryTheory.Pretriangulated.contractible_distinguished₁, CategoryTheory.Bicategory.leftUnitor_comp, CategoryTheory.Presheaf.isLocallyInjective_toPlus, HomologicalComplex.mapBifunctor₂₃.d₁_eq_zero, CategoryTheory.BicategoricalCoherence.assoc'_iso, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Comonad.adj_unit, CategoryTheory.NonPreadditiveAbelian.neg_neg, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.Sum.functorEquiv_unitIso, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, TopModuleCat.hom_neg, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.Limits.coprod.inl_snd_assoc, CategoryTheory.toQuotientPaths_map, CategoryTheory.Cat.associator_hom_toNatTrans, CategoryTheory.Presheaf.isLocallyInjective_forget, Mathlib.Tactic.Bicategory.evalComp_nil_nil, CategoryTheory.Cat.Hom.instIsIsoFunctorαCategoryToNatTransHomHom, CategoryTheory.unop_sub, CategoryTheory.Localization.Preadditive.zero_add', dNext_eq_zero, CategoryTheory.ActionCategory.hom_as_subtype, SimplicialObject.Split.cofan_inj_naturality_symm, CategoryTheory.MonoidalOpposite.tensorLeftIso_inv_app_unmop, CategoryTheory.Pseudofunctor.isoMapOfCommSq_eq, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃, CategoryTheory.cocones_obj_obj, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_π_apply, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.Localization.Preadditive.neg'_add'_self, CategoryTheory.LaxFunctor.mapComp_naturality_left, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, CategoryTheory.GrothendieckTopology.plusMap_zero, CategoryTheory.Functor.RepresentableBy.ofIsoObj_homEquiv, CochainComplex.mappingCone.lift_f, CategoryTheory.ComposableArrows.IsComplex.zero, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Functor.CorepresentableBy.coyoneda_homEquiv, ModuleCat.monoidalClosed_pre_app, CategoryTheory.Adjunction.homEquiv_leftAdjointUniq_hom_app, AlgebraicGeometry.pointsPi_surjective, CategoryTheory.Bicategory.associatorNatIsoMiddle_inv_app, SemimoduleCat.hom_smul, CategoryTheory.Limits.pullback_fst_map_snd_isPullback, HomologicalComplex₂.totalAux.d₁_eq', CategoryTheory.ShortComplex.add_τ₁, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_map_down, SSet.stdSimplex.nonDegenerateEquiv_symm_apply_coe, CategoryTheory.InducedCategory.homLinearEquiv_symm_apply_hom, CategoryTheory.Pseudofunctor.map₂_whisker_right_assoc, CategoryTheory.Arrow.equivSigma_apply_snd_fst, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.WithInitial.ofCommaMorphism_app, SimplicialObject.Splitting.cofan_inj_comp_app_assoc, HomologicalComplex.ι_mapBifunctorFlipIso_hom_assoc, CategoryTheory.prodOpEquiv_counitIso_inv_app, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_apply_φ, TopologicalSpace.OpenNhds.apply_mk, CategoryTheory.MonoidalOpposite.tensorIso_inv_app_unmop, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app_assoc, CommGrpCat.ofHom_injective, CochainComplex.HomComplex.CohomologyClass.toHom_mk, CategoryTheory.ShortComplex.leftHomologyMap'_zero, CategoryTheory.Limits.prod.inr_fst, CategoryTheory.Adjunction.homEquiv_naturality_right, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_hom, CategoryTheory.GrpObj.zpow_comp_assoc, CategoryTheory.Functor.IsRepresentedBy.iff_exists_representableBy, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, CochainComplex.HomComplex.Cochain.add_v, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_inv_iso_hom, CategoryTheory.CosimplicialObject.cechConerveEquiv_apply, CategoryTheory.Bicategory.prod_rightUnitor_hom_snd, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.Bicategory.precomp_map, CategoryTheory.Discrete.productEquiv_functor_map, CategoryTheory.Bicategory.pentagon_hom_hom_inv_hom_hom, CategoryTheory.Bicategory.conjugateEquiv_symm_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Bicategory.prod_associator_hom_snd, CategoryTheory.Bicategory.Adjunction.right_triangle, CategoryTheory.Bicategory.triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.injective_iff_rlp_monomorphisms_zero, CategoryTheory.ShortComplex.rightHomologyMap'_zero, HomologicalComplex.biprod_inl_snd_f, CochainComplex.toSingle₀Equiv_symm_apply_f_zero, CategoryTheory.ComposableArrows.homMk₀_app, CategoryTheory.Limits.preservesCokernel_zero, ModuleCat.semilinearMapAddEquiv_apply, Path.isChain_cons_toList_nonempty, CategoryTheory.Preadditive.comp_add_assoc, CategoryTheory.curryingIso_hom_toFunctor_map_app, CategoryTheory.quotientPathsTo_map, CategoryTheory.Oplax.OplaxTrans.Modification.naturality, CategoryTheory.Quotient.comp_mk, CategoryTheory.ShortComplex.HomologyMapData.smul_left, CategoryTheory.Functor.mapZeroObject_hom, Rep.coindIso_hom_hom_hom, ChainComplex.alternatingConst_map_f, CategoryTheory.BicategoricalCoherence.right_iso, CategoryTheory.Bicategory.Equivalence.right_triangle_hom, ModuleCat.freeHomEquiv_symm_apply, CategoryTheory.Bicategory.Prod.fst_obj, CategoryTheory.MonObj.comp_pow_assoc, CategoryTheory.Functor.homologySequenceδ_comp, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_inv, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, SemimoduleCat.hom_sum, CategoryTheory.instEffectiveEpiFamily, CategoryTheory.Bicategory.associatorNatIsoRight_inv_app, CategoryTheory.Comma.ext_iff, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp_π_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right, CategoryTheory.ExponentiableMorphism.homEquiv_apply_eq, CategoryTheory.Groupoid.vertexGroup_mul, CategoryTheory.ShortComplex.Homotopy.symm_h₁, CategoryTheory.PreZeroHypercover.shrink_I₀, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π_assoc, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi, CategoryTheory.Localization.homEquiv_isoOfHom_inv, CategoryTheory.Bicategory.leftUnitor_comp_inv_assoc, CategoryTheory.Localization.homEquiv_id, CategoryTheory.NatTrans.app_sub, CategoryTheory.Bicategory.leftUnitor_whiskerRight_assoc, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_two_assoc, AlgebraicTopology.DoldKan.P_add_Q_f, ModuleCat.homEquiv_extendScalarsId, CategoryTheory.NatTrans.app_neg, CategoryTheory.Limits.kernelForkBiproductToSubtype_isLimit, CategoryTheory.ShortComplex.SnakeInput.w₁₃, groupHomology.d₂₁_comp_d₁₀_assoc, AddCommGrpCat.hom_neg, CategoryTheory.Limits.hasImage_zero, AlgebraicTopology.DoldKan.hσ'_eq', CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Bicategory.leftUnitor_inv_congr, Hom.cast_heq, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_inv, CategoryTheory.Limits.kernelBiproductToSubtypeIso_inv, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range, CategoryTheory.Bicategory.Adj.forget₁_mapComp, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, CategoryTheory.Limits.Trident.IsLimit.homIso_natural, HomologicalComplex.dFrom_comp_xNextIsoSelf_assoc, CategoryTheory.Bicategory.rightUnitor_hom_congr, SemiNormedGrp.hom_zsum, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_inv, CategoryTheory.Preadditive.sum_comp', CategoryTheory.CatEnrichedOrdinary.homEquiv_id, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp_assoc, CategoryTheory.Pseudofunctor.comp_mapId, HomologicalComplex₂.D₁_D₂, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, CategoryTheory.Bicategory.Prod.swap_mapId_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, CochainComplex.HomComplex.Cochain.toSingleMk_sub, CategoryTheory.Limits.HasZeroMorphisms.comp_zero, CategoryTheory.sum.inlCompInverseAssociator_hom_app_down_down, CategoryTheory.unop_sum, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, CategoryTheory.Discrete.productEquiv_inverse_map, CategoryTheory.Bicategory.Prod.sectR_map, CategoryTheory.Sieve.toUliftFunctor_app_down_coe, CategoryTheory.ShortComplex.leftHomologyMap'_add, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst, CategoryTheory.StrictPseudofunctor.mk''_map₂, CategoryTheory.Linear.rightComp_apply, CategoryTheory.ShiftedHom.mk₀_smul, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc, CategoryTheory.MonoidalCategory.tensor_dite, CategoryTheory.NonPreadditiveAbelian.sub_self, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_inv, CategoryTheory.ShortComplex.Homotopy.h₀_f, Bicategory.Opposite.op2_associator_hom, CategoryTheory.ShortComplex.opcyclesMap'_neg, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, SimplicialObject.Splitting.cofan_inj_eq_assoc, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_hom, FintypeCat.homMk_apply, CategoryTheory.GrothendieckTopology.uliftYoneda_map_val_app_down, CategoryTheory.PreZeroHypercover.sum_f, CategoryTheory.Abelian.Ext.mk₀_homEquiv₀_apply, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, ComplexShape.Embedding.AreComplementary.hom_ext', CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, CategoryTheory.Adjunction.homEquiv_id, CommRingCat.coproductCocone_ι, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_inv_τr, CategoryTheory.CatEnriched.hComp_id, CategoryTheory.instReflectsIsomorphismsForgetTypeHom, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr_hom, CategoryTheory.Adjunction.homEquiv_naturality_left, HomologicalComplex.mapBifunctor.d₁_eq, CategoryTheory.Lax.OplaxTrans.id_app, CategoryTheory.Oplax.StrongTrans.homCategory_comp_as_app, CategoryTheory.Bicategory.rightZigzagIso_hom, CategoryTheory.LaxFunctor.id_mapComp, CategoryTheory.Functor.IsRepresentedBy.representableBy_homEquiv_apply, CategoryTheory.Preadditive.sub_comp, CategoryTheory.Functor.map_one, ChainComplex.alternatingConst_obj, CategoryTheory.Cat.leftUnitor_inv_app, CategoryTheory.Functor.toPseudoFunctor_obj, CategoryTheory.GradedObject.ιMapObjOrZero_eq_zero, CategoryTheory.Bicategory.associator_inv_naturality_middle_assoc, CategoryTheory.LaxFunctor.map₂_leftUnitor_app, CategoryTheory.Preadditive.mono_iff_cancel_zero, CategoryTheory.BicategoricalCoherence.refl_iso, CategoryTheory.Bicategory.rightUnitor_comp_inv_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.Limits.inl_pushoutZeroZeroIso_hom, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂_assoc, CategoryTheory.WithTerminal.opEquiv_functor_map, CategoryTheory.PreGaloisCategory.evaluation_aut_injective_of_isConnected, PresheafOfModules.zero_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τl, CategoryTheory.Lax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Limits.Cotrident.IsColimit.homIso_apply_coe, CategoryTheory.CatEnrichedOrdinary.Hom.base_eqToHom, AddCommGrpCat.homAddEquiv_apply, CategoryTheory.Over.coreHomEquivToOverSections_homEquiv, CategoryTheory.Functor.PreservesHomology.preservesKernel, CategoryTheory.MorphismProperty.isColocal_iff, Homotopy.nullHomotopy'_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_hom_hom, CategoryTheory.Limits.IsInitial.subsingleton_to, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Preadditive.neg_comp_assoc, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_map₂, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, CategoryTheory.Abelian.Pseudoelement.zero_apply, CategoryTheory.Limits.biprod.lift_desc, Hom.unop_mk, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, CategoryTheory.Preadditive.instEpiNegHom, CategoryTheory.eqToHom_heq_id_dom, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, Bicategory.Opposite.bicategory_rightUnitor_hom_unop2, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f, CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_hom, CategoryTheory.Functor.prod_δ_fst, CategoryTheory.Preadditive.neg_iso_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv, SemiNormedGrp.hom_nsum, CategoryTheory.cokernel_zero_of_nonzero_to_simple, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three, CategoryTheory.ShortComplex.zero_τ₂, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop, CategoryTheory.GrothendieckTopology.yonedaEquiv_yoneda_map, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Functor.IsStronglyCocartesian.map_self, CategoryTheory.Bicategory.Strict.associator_eqToIso, CategoryTheory.Linear.smul_comp, CategoryTheory.Pretriangulated.Triangle.smul_hom₁, CategoryTheory.ShortComplex.RightHomologyMapData.add_φQ, CategoryTheory.Functor.PreservesZeroMorphisms.map_zero, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, CategoryTheory.ShortComplex.leftHomologyMap_smul, CategoryTheory.Cat.Hom.equivFunctor_symm_apply, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, CategoryTheory.Functor.comp_homologySequenceδ_assoc, HomologicalComplex.homotopyCofiber.d_fstX_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τr, CategoryTheory.OplaxFunctor.mapComp'_eq_mapComp, CategoryTheory.ShortComplex.opcyclesMap'_smul, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp, CategoryTheory.InducedWideCategory.category_id_coe, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_symm_apply, CategoryTheory.ShortComplex.LeftHomologyData.liftK_π_eq_zero_of_boundary_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.map₂_app_hom, SSet.stdSimplex.face_singleton_compl, CategoryTheory.Functor.partialRightAdjointHomEquiv_map_comp, CategoryTheory.Bicategory.triangle_assoc, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.Bicategory.leftUnitorNatIso_inv_app, TopologicalSpace.Opens.val_apply, HomologicalComplex.Hom.fAddMonoidHom_apply, CategoryTheory.down_comp, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, Hom.eq_cast_iff_heq, CategoryTheory.equiv_punit_iff_unique, CategoryTheory.MonoidalCategory.externalProductBifunctor_obj_map, AlgebraicGeometry.IsOpenImmersion.lift_app, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, CochainComplex.shiftFunctor_obj_d, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.GrothendieckTopology.yonedaEquiv_apply, CategoryTheory.PreZeroHypercover.shrink_f, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.OplaxFunctor.map₂_rightUnitor_app_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.shrinkYonedaEquiv_symm_map, CategoryTheory.ComposableArrows.IsComplex.zero', CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, CategoryTheory.ShortComplex.leftHomologyMap'_smul, CategoryTheory.Functor.currying_functor_map_app, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv, CategoryTheory.map_coyonedaEquiv, CategoryTheory.Adjunction.homEquiv_symm_apply, CategoryTheory.ShortComplex.cyclesMap_add, FintypeCat.instFullForgetHomCarrier, CochainComplex.mappingCone.d_fst_v, CategoryTheory.DifferentialObject.zero_f, CategoryTheory.Oplax.OplaxTrans.whiskerRight_as_app, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.MonObj.mul_eq_mul, AlgebraicGeometry.Scheme.stalkMap_congr, CategoryTheory.Bicategory.associator_naturality_middle_assoc, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, AlgebraicGeometry.Spec.homEquiv_symm_apply, ModuleCat.ihom_ev_app, Bicategory.Opposite.bicategory_rightUnitor_inv_unop2, CategoryTheory.ShortComplex.hasHomology_of_hasKernel, HomologicalComplex.mapBifunctor₂₃.d₂_eq_zero, SimplicialObject.Splitting.IndexSet.eqId_iff_len_le, CategoryTheory.ObjectProperty.smul_mem_trW_iff, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.map_yonedaEquiv', CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_as_app, CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_as_app, CategoryTheory.ObjectProperty.leftOrthogonal_iff, CategoryTheory.Limits.initial.subsingleton_to, CategoryTheory.Functor.map_sum, Rep.indResHomEquiv_symm_apply_hom, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, CategoryTheory.CategoryOfElements.toCostructuredArrow_map, CategoryTheory.Functor.toOplaxFunctor'_mapId, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom, CategoryTheory.Bicategory.RightExtension.w, CategoryTheory.Bicategory.Prod.fst_mapId_inv, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom, CategoryTheory.Bicategory.Adj.leftUnitor_hom_τl, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Functor.homEquivOfIsLeftKanExtension_apply_app, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_inv, CategoryTheory.Oplax.OplaxTrans.Modification.id_app, CategoryTheory.Sum.functorEquiv_counitIso, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, Hom.cast_eq_iff_heq, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_obj, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_hom_iso, CategoryTheory.Bicategory.mateEquiv_apply', CategoryTheory.nerve.edgeMk_surjective, CategoryTheory.Bicategory.Equivalence.left_triangle_hom, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, CategoryTheory.Adjunction.equivHomsetRightOfNatIso_symm_apply, CategoryTheory.Pretriangulated.Triangle.zero_hom₂, CategoryTheory.Bicategory.conjugateEquiv_comp, CategoryTheory.OplaxFunctor.mapComp_id_left, CategoryTheory.LaxFunctor.map₂_leftUnitor_app_assoc, CategoryTheory.epi_iff_forall_injective, CategoryTheory.Cat.eqToHom_app, skyscraperPresheaf_map, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_fst, HomologicalComplex.ι_mapBifunctorFlipIso_inv, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_three_assoc, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app, CategoryTheory.Functor.IsStronglyCocartesian.universal_property, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, CategoryTheory.Bicategory.postcomp_map, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, CategoryTheory.LaxFunctor.map₂_rightUnitor, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality_assoc, CategoryTheory.Bicategory.triangle_assoc_comp_right_assoc, CategoryTheory.LaxFunctor.mapId'_eq_mapId, CategoryTheory.ShortComplex.f_pOpcycles, CategoryTheory.Functor.mapLinearMap_apply, CategoryTheory.shrinkYonedaEquiv_shrinkYoneda_map, CategoryTheory.Adjunction.CoreHomEquivUnitCounit.homEquiv_counit, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, HomologicalComplex.cylinder.πCompι₀Homotopy.inlX_nullHomotopy_f, CategoryTheory.WithTerminal.opEquiv_inverse_map, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.Equivalence.symmEquivInverse_map_app, CategoryTheory.prod.associator_map, CategoryTheory.ShiftedHom.opEquiv'_add_symm, CategoryTheory.Functor.functorHomEquiv_symm_apply_app_app, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_map₂, CategoryTheory.Mon.Hom.hom_one, CategoryTheory.Bicategory.rightUnitorNatIso_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, AddCommGrpCat.hom_zsmul, CategoryTheory.colimitYonedaHomEquiv_π_apply, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_inv_assoc, CategoryTheory.heq_eqToHom_comp_iff, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, heq_of_homOfEq_ext, CategoryTheory.ShortComplex.Splitting.s_r_assoc, CategoryTheory.mono_iff_forall_injective, CategoryTheory.ShortComplex.opcyclesMap'_zero, CategoryTheory.ShortComplex.leftHomologyMap_neg, CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, CategoryTheory.uliftCoyonedaEquiv_comp, Action.FintypeCat.ofMulAction_apply, HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary_assoc, CategoryTheory.LaxFunctor.PseudoCore.mapIdIso_inv, CategoryTheory.CatEnrichedOrdinary.Hom.base_id, CategoryTheory.yonedaEquiv_symm_app_apply, CategoryTheory.Bicategory.leftUnitor_comp_assoc, SemimoduleCat.homAddEquiv_symm_apply_hom, CategoryTheory.Arrow.equivSigma_symm_apply_right, FDRep.finrank_hom_simple_simple, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Bicategory.LeftLift.w, CategoryTheory.Join.mapIsoWhiskerRight_inv_app, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Pseudofunctor.mapId'_inv_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.tensorLeftHomEquiv_symm_naturality, CategoryTheory.Functor.map_surjective, CategoryTheory.nerve.homEquiv_symm_apply, CategoryTheory.mono_to_simple_zero_of_not_iso, SheafOfModules.unitHomEquiv_apply_coe, AlgebraicTopology.DoldKan.PInfty_add_QInfty, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app_assoc, CategoryTheory.preadditiveYonedaObj_map, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app, CategoryTheory.ShortComplex.f_pOpcycles_assoc, CategoryTheory.ShortComplex.ShortExact.comp_δ_assoc, CategoryTheory.prod.inverseAssociator_map, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, CochainComplex.HomComplex.Cochain.single_v_eq_zero, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Adjunction.homEquiv_naturality_left_square_assoc, CategoryTheory.Limits.cokernel.condition_apply, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Limits.compYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Limits.KernelFork.map_condition_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_comp, groupCohomology.d₀₁_eq_zero, CategoryTheory.yonedaEquiv_comp, CategoryTheory.prod_comp_snd, HomologicalComplex₂.ιTotal_totalFlipIso_f_inv, CategoryTheory.unitCompPartialBijective_symm_apply, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, CategoryTheory.Bicategory.triangle_assoc_comp_left_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_map, CategoryTheory.Localization.structuredArrowEquiv_apply, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Limits.kernelSubobject_zero, CategoryTheory.Limits.Bicone.ι_of_isLimit

RingCat

Definitions

NameCategoryTheorems
Hom 📖CompData
3 mathmath: PresheafOfModules.map_comp, PresheafOfModules.map_id, PresheafOfModules.map_comp_assoc

RootPairing

Definitions

NameCategoryTheorems
Hom 📖CompData
7 mathmath: Equiv.toHom_one, Hom.coweightMap_mul, Hom.coweightMap_one, Hom.indexEquiv_one, Hom.indexEquiv_mul, Hom.weightMap_one, Hom.weightMap_mul

SSet.OneTruncation₂

Definitions

NameCategoryTheorems
Hom 📖CompOp

SSet.Truncated.HomotopyCategory₂

Definitions

NameCategoryTheorems
Hom 📖CompOp

SemiNormedGrp

Definitions

NameCategoryTheorems
Hom 📖CompData

SemiNormedGrp₁

Definitions

NameCategoryTheorems
Hom 📖CompData

SemiRingCat

Definitions

NameCategoryTheorems
Hom 📖CompData

Semigrp

Definitions

NameCategoryTheorems
Hom 📖CompData

SemimoduleCat

Definitions

NameCategoryTheorems
Hom 📖CompData
3 mathmath: hom_injective, hom_bijective, hom_surjective

SetRel

Definitions

NameCategoryTheorems
Hom 📖CompOp
3 mathmath: RelSeries.last_map, RelSeries.head_map, RelSeries.map_apply

SheafOfModules

Definitions

NameCategoryTheorems
Hom 📖CompData

SimpleGraph

Definitions

NameCategoryTheorems
Hom 📖CompOp
52 mathmath: map_singletonSubgraph, Hom.instIsEmptyOfForall, Walk.map_copy, homOfConnectedComponents_apply, Subgraph.spanningHom_injective, Subgraph.comap_verts, Copy.toHom_apply, Hom.coe_id, Copy.injective, Walk.darts_map, Walk.map_nil, Hom.map_adj, Walk.map_map, Hom.mapEdgeSet_coe, Hom.map_mem_edgeSet, Hom.mapDart_apply, Walk.IsSubwalk.map, Subgraph.edgeSet_map, Subgraph.map_verts, ConnectedComponent.toSimpleGraph_hom_apply, Copy.injective', Hom.coe_comp, Subgraph.map_adj, Walk.reverse_map, Walk.length_map, Subgraph.hom_injective, Reachable.map, Hom.mapNeighborSet_coe, Hom.instSubsingletonOfForall, ConnectedComponent.map_mk, Walk.map_cons, Walk.edgeSet_map, Walk.map_append, Walk.map_eq_of_eq, Embedding.coe_toHom, Walk.support_map, Walk.edges_map, Reachable.coe_subgraphMap, Hom.injective_of_top_hom, nonempty_hom_of_forall_finite_subgraph_hom, map_subgraphOfAdj, Hom.coe_ofLE, Walk.map_eq_nil_iff, Subgraph.inclusion.injective, Walk.getVert_map, Hom.instFinite, Walk.toSubgraph_map, Subgraph.coe_hom, Subgraph.comap_adj, Hom.apply_mem_neighborSet, Copy.coe_toHom, Hom.ofLE_apply

SimplexCategory

Definitions

NameCategoryTheorems
Hom 📖CompOp

SimplicialObject.Split

Definitions

NameCategoryTheorems
Hom 📖CompData

TopCat

Definitions

NameCategoryTheorems
Hom 📖CompData

TopModuleCat

Definitions

NameCategoryTheorems
Hom 📖CompData

Trivialization

Definitions

NameCategoryTheorems
continuousLinearMap 📖CompOp
4 mathmath: baseSet_continuousLinearMap, continuousLinearMap_apply, hom_trivializationAt, Bundle.ContinuousLinearMap.memTrivializationAtlas

Theorems

NameKindAssumesProvesValidatesDepends On
baseSet_continuousLinearMap 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
baseSet
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.TotalSpace
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
Bundle.TotalSpace.proj
continuousLinearMap
Set
Set.instInter
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousLinearMap_apply 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
toFun'
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.TotalSpace
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.TotalSpace.proj
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
continuousLinearMap
ContinuousLinearMap.comp
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.right_ids
continuousLinearMapAt
trivialization_linear
RingHomCompTriple.ids
Bundle.TotalSpace.snd
symmL
SeminormedAddCommGroup.toIsTopologicalAddGroup

UniformSpaceCat

Definitions

NameCategoryTheorems
Hom 📖CompData

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_hom_bundle 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousAt
Bundle.TotalSpace
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
Bundle.TotalSpace.proj
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.inCoordinates
Bundle.TotalSpace.snd
FiberBundle.continuousAt_totalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousWithinAt_hom_bundle 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ContinuousWithinAt
Bundle.TotalSpace
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
Bundle.TotalSpace.proj
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.inCoordinates
Bundle.TotalSpace.snd
FiberBundle.continuousWithinAt_totalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
hom_trivializationAt 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
FiberBundle.trivializationAt
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
Bundle.ContinuousLinearMap.fiberBundle
Trivialization.continuousLinearMap
instMemTrivializationAtlasTrivializationAt
SeminormedAddCommGroup.toIsTopologicalAddGroup
hom_trivializationAt_apply 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Trivialization.toFun'
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.TotalSpace
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.TotalSpace.proj
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
FiberBundle.trivializationAt
Bundle.ContinuousLinearMap.fiberBundle
ContinuousLinearMap.inCoordinates
Bundle.TotalSpace.snd
SeminormedAddCommGroup.toIsTopologicalAddGroup
hom_trivializationAt_baseSet 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Trivialization.baseSet
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Bundle.TotalSpace
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
Bundle.TotalSpace.proj
FiberBundle.trivializationAt
Bundle.ContinuousLinearMap.fiberBundle
Set
Set.instInter
SeminormedAddCommGroup.toIsTopologicalAddGroup
hom_trivializationAt_source 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
PartialEquiv.source
Bundle.TotalSpace
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
OpenPartialHomeomorph.toPartialEquiv
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
instTopologicalSpaceProd
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Trivialization.toOpenPartialHomeomorph
Bundle.TotalSpace.proj
FiberBundle.trivializationAt
Bundle.ContinuousLinearMap.fiberBundle
Set.preimage
Set
Set.instInter
Trivialization.baseSet
SeminormedAddCommGroup.toIsTopologicalAddGroup
hom_trivializationAt_target 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
PartialEquiv.target
Bundle.TotalSpace
ContinuousLinearMap
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
OpenPartialHomeomorph.toPartialEquiv
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
instTopologicalSpaceProd
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Trivialization.toOpenPartialHomeomorph
Bundle.TotalSpace.proj
FiberBundle.trivializationAt
Bundle.ContinuousLinearMap.fiberBundle
SProd.sprod
Set
Set.instSProd
Set.instInter
Trivialization.baseSet
Set.univ
SeminormedAddCommGroup.toIsTopologicalAddGroup
inCoordinates_apply_eq₂ 📖mathematicalIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Set
Set.instMembership
Trivialization.baseSet
Bundle.TotalSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Bundle.TotalSpace.proj
FiberBundle.trivializationAt
DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
ContinuousLinearMap.toNormedAddCommGroup
RingHomIsometric.ids
ContinuousLinearMap.toNormedSpace
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Ring.toSemiring
CommRing.toRing
ContinuousLinearMap.inCoordinates
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
ContinuousLinearMap.module
ContinuousSMul.continuousConstSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Bundle.ContinuousLinearMap.topologicalSpaceTotalSpace
ContinuousLinearMap.topologicalSpace
Bundle.ContinuousLinearMap.fiberBundle
Bundle.ContinuousLinearMap.vectorBundle
LinearMap
LinearMap.instFunLike
Trivialization.linearMapAt
trivialization_linear
instMemTrivializationAtlasTrivializationAt
Trivialization.symm
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
RingHomIsometric.ids
Bundle.ContinuousLinearMap.vectorBundle
trivialization_linear
instMemTrivializationAtlasTrivializationAt
RingHomCompTriple.right_ids
RingHomInvPair.ids
RingHomCompTriple.ids
ContinuousLinearMap.inCoordinates_eq

---

← Back to Index