Hom 📖 | CompOp | 4706 mathmath: TopologicalSpace.OpenNhds.coe_id, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_right, CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv, CategoryTheory.ShortComplex.opcyclesMap_smul, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d, CategoryTheory.Grp.Hom.hom_div, CategoryTheory.Limits.Fork.IsLimit.homIso_natural, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π, CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, CategoryTheory.ShortComplex.toCycles_comp_homologyπ, Rep.resCoindHomEquiv_symm_apply_hom, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_assoc, CategoryTheory.Functor.functorHomEquiv_apply_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.Bicategory.prod_whiskerLeft_snd, Rep.resCoindHomEquiv_apply_hom, CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_inv_app, CommRingCat.HomTopology.isEmbedding_precomp_of_surjective, CategoryTheory.Functor.map_homCongr, CategoryTheory.Adjunction.compUliftCoyonedaIso_hom_app_app_down, CategoryTheory.ShortComplex.toCycles_comp_homologyπ_assoc, ModuleCat.hom_zero, CategoryTheory.uliftCoyonedaEquiv_apply, CategoryTheory.Limits.eq_zero_of_mono_cokernel, CategoryTheory.Limits.zero_of_from_zero, CategoryTheory.TwoSquare.equivNatTrans_symm_apply, CategoryTheory.ShortComplex.Homotopy.h₀_f_assoc, CommRingCat.HomTopology.isClosedEmbedding_precomp_of_surjective, Bicategory.Opposite.op2_associator, CategoryTheory.Presieve.ofArrows_eq_ofArrows_uncurry, CategoryTheory.Limits.cokernelBiproductιIso_hom, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.Types.instIsCorepresentableForgetTypeHom, CategoryTheory.Limits.limitConeOfUnique_cone_π, CategoryTheory.StrictPseudofunctorPreCore.map_id, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, TopModuleCat.hom_zero, CategoryTheory.Bicategory.RightExtension.w_assoc, SemimoduleCat.Hom.hom₂_apply, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, CategoryTheory.Functor.natTransEquiv_apply_app, CategoryTheory.Functor.mapComposableArrowsObjMk₂Iso_inv_app, CategoryTheory.uliftCoyonedaIsoCoyoneda_hom_app_app, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp', CategoryTheory.coyonedaEquiv_symm_app_apply, CategoryTheory.Presheaf.instIsLocallySurjectiveHomWhiskerRightOppositeForget, CategoryTheory.Oplax.StrongTrans.Modification.vcomp_app, HomologicalComplex.singleMapHomologicalComplex_hom_app_ne, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.ObjectProperty.isoModSerre_zero_iff, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, TopCat.PrelocalPredicate.res, CategoryTheory.PreGaloisCategory.mulAction_def, CategoryTheory.Pseudofunctor.map₂_associator_assoc, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionRight_unop, CategoryTheory.ShortComplex.SnakeInput.w₀₂_assoc, CategoryTheory.Sheaf.ΓHomEquiv_naturality_left_symm, TopologicalSpace.Opens.id_apply, CategoryTheory.preadditiveCoyonedaObj_map, CategoryTheory.Limits.reflexivePair.diagramIsoReflexivePair_hom_app, CategoryTheory.Functor.homObjEquiv_apply_app, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three_assoc, CategoryTheory.Limits.Bicone.π_of_isColimit, AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f, CategoryTheory.CatEnrichedOrdinary.id_hComp_heq, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app', CategoryTheory.Limits.inr_of_isLimit, CategoryTheory.sum_whiskerRight, CategoryTheory.LaxFunctor.map₂_associator_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, CategoryTheory.Limits.coprod.inl_snd, CategoryTheory.ShortComplex.Homotopy.refl_h₀, LightProfinite.proj_comp_transitionMap, HomologicalComplex.dFrom_comp_xNextIsoSelf, CategoryTheory.Preadditive.IsIso.comp_left_eq_zero, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, CategoryTheory.Presieve.uncurry_bind, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc, CategoryTheory.ShortComplex.homologyMap_smul, CategoryTheory.opHom_apply, CategoryTheory.NatTrans.prod'_app_snd, CategoryTheory.Bicategory.Adj.rightUnitor_hom_τl, CategoryTheory.ShortComplex.hasHomology_of_zeros, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Limits.kernelIsoOfEq_trans, CategoryTheory.Arrow.equivSigma_symm_apply_left, CategoryTheory.Preadditive.hasKernel_of_hasEqualizer, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_snd, CategoryTheory.NonPreadditiveAbelian.neg_sub', CategoryTheory.conjugateEquiv_iso, CategoryTheory.Cat.Hom₂.comp_app, CategoryTheory.ShortComplex.Homotopy.comm₁, CategoryTheory.ShortComplex.HomologyData.ofIso_right_p, CategoryTheory.Bicategory.Comonad.comul_assoc_flip, HomotopyCategory.quotient_map_out_comp_out, Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil, CategoryTheory.ShortComplex.Homotopy.comp_h₃, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id_assoc, CategoryTheory.Join.mapPairId_hom_app, CategoryTheory.Sheaf.instIsLocallySurjectiveHomToImage, TopCat.presheafToType_map, CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearCoyoneda_obj_obj_carrier, CategoryTheory.Limits.biprod.lift_eq, CategoryTheory.ShortComplex.RightHomologyData.ι_g', CategoryTheory.OplaxFunctor.id_mapComp, Rep.MonoidalClosed.linearHomEquiv_symm_hom, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_comp, CategoryTheory.Iso.eHomCongr_inv_comp_assoc, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_map, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc, CategoryTheory.Join.mapWhiskerLeft_app, HomologicalComplex.double_d_eq_zero₀, Action.neg_hom, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_two, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.ComposableArrows.IsComplex.zero'_assoc, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_one, CategoryTheory.Abelian.LeftResolution.karoubi.F_obj_p, CategoryTheory.Linear.instMonoHSMulHomOfInvertible, HomologicalComplex.mapBifunctor₁₂.d_eq, CategoryTheory.Localization.Preadditive.homEquiv_symm_apply, CategoryTheory.Comma.opFunctor_obj, CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ω₀, CategoryTheory.ReflQuiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.Bicategory.eqToHomTransIso_refl_left, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.id_map₂, SimplicialObject.Splitting.IndexSet.epiComp_fst, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, CategoryTheory.MonoidalOpposite.tensorLeftMopIso_hom_app_unmop, Bicategory.Opposite.op2_associator_inv, HomologicalComplex.dFrom_eq_zero, CategoryTheory.Pseudofunctor.map₂_associator_app_assoc, CategoryTheory.Bicategory.Pith.inclusion_mapComp, LightCondensed.ihomPoints_apply, TopCat.Presheaf.isSheaf_iff_isSheafUniqueGluing_types, CategoryTheory.shrinkYonedaEquiv_comp, CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection', CategoryTheory.ShortComplex.homologyMap_add, CategoryTheory.Grp.Hom.hom_hom_zpow, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.BicartesianSq.of_is_biproduct₁, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_hom_iso, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ι_presheafHom, CategoryTheory.Mon_Class.mul_comp, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, CategoryTheory.sum_tensor, CategoryTheory.Bicategory.conjugateEquiv_whiskerRight, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, HomotopicalAlgebra.CofibrantObject.homRel_equivalence_of_isFibrant_tgt, CategoryTheory.CategoryOfElements.map_snd, CategoryTheory.Bicategory.LeftLift.whiskering_map, Action.sum_hom, CategoryTheory.NonPreadditiveAbelian.diag_σ, CategoryTheory.iterated_mateEquiv_conjugateEquiv, CategoryTheory.Bicategory.leftUnitor_inv_naturality_assoc, CategoryTheory.Limits.monoFactorisationZero_I, CategoryTheory.Mon_Class.comp_mul, CategoryTheory.Limits.terminal.subsingleton_to, CategoryTheory.ShortComplex.leftHomologyMap'_sub, CategoryTheory.Limits.biprod.inl_snd_assoc, SimplicialObject.Splitting.IndexSet.id_fst, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.Sieve.functor_obj, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, PresheafOfModules.add_app, CategoryTheory.prod_Hom, CategoryTheory.IsPushout.of_is_bilimit', starEquivCostar_symm_apply_fst, CategoryTheory.ShortComplex.Homotopy.sub_h₀, CategoryTheory.Subfunctor.Subpresheaf.range_eq_ofSection, CategoryTheory.Bicategory.whiskerLeft_inv_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_hom, CategoryTheory.FreeBicategory.lift_mapId, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, TopCat.Presheaf.coveringOfPresieve.iSup_eq_of_mem_grothendieck, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_leftUnitor, CategoryTheory.ShortComplex.homologyMap_zero, CategoryTheory.Bicategory.Adj.associator_inv_τr, CategoryTheory.Bicategory.Prod.sectL_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app, CategoryTheory.ExponentiableMorphism.homEquiv_symm_apply_eq, CategoryTheory.Grp_Class.comp_inv, groupHomology.map₁_one, CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CategoryTheory.Functor.coe_mapLinearMap, AddCommGrpCat.hom_add, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, groupCohomology.d₀₁_comp_d₁₂, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, CategoryTheory.Functor.map_mul, prevD_comp_left, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg', ModuleCat.freeHomEquiv_apply, CategoryTheory.Idempotents.neg_def, CategoryTheory.Bicategory.whiskerRight_comp_assoc, CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃_assoc, CategoryTheory.Bicategory.Prod.snd_map, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv_symm, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom, CategoryTheory.Limits.Multicofork.ofπ_ι_app, CategoryTheory.ShortComplex.RightHomologyMapData.neg_φH, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_inv_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_def, CategoryTheory.Bicategory.LeftExtension.w_assoc, TopCat.coe_of_of, CategoryTheory.Functor.IsEventuallyConstantTo.coneπApp_eq, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.shrinkYonedaEquiv_symm_map_assoc, CategoryTheory.instHasFunctorialSurjectiveInjectiveFactorizationTypeHom, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_apply, CategoryTheory.CatEnriched.id_hComp, CategoryTheory.OplaxFunctor.map₂_associator, CategoryTheory.Bicategory.inv_hom_whiskerRight_whiskerRight_assoc, CategoryTheory.Bicategory.Adj.rIso_inv, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, CategoryTheory.Bicategory.mateEquiv_comp_id_right, CategoryTheory.CatCenter.app_sub, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_comp_as_app, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π_assoc, CategoryTheory.Comonad.ComonadicityInternal.unitFork_π_app, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.Bicategory.inv_hom_whiskerRight_assoc, CategoryTheory.Bicategory.whisker_exchange, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv, CategoryTheory.Bicategory.inv_hom_whiskerRight, TopModuleCat.hom_zero_apply, HomologicalComplex.extend.d_comp_eq_zero_iff, CategoryTheory.finrank_hom_simple_simple_le_one, CategoryTheory.Functor.hom_map, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_comp, CategoryTheory.sum.inlCompInrCompInverseAssociator_hom_app_down_down, CategoryTheory.Functor.uliftCoyonedaCoreprXIso_hom_app, CategoryTheory.LaxFunctor.map₂_leftUnitor_assoc, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg, CategoryTheory.eHomEquiv_id, CategoryTheory.Cat.associator_hom_app, CategoryTheory.Quiv.homEquivOfIso_symm_apply, CategoryTheory.Limits.kernelBiprodSndIso_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_obj, CochainComplex.mappingCone.inr_f_fst_v, CategoryTheory.ShortComplex.Homotopy.smul_h₁, CategoryTheory.Bicategory.pentagon_inv, CategoryTheory.ShortComplex.zero_assoc, AlgebraicGeometry.Scheme.Modules.pushforwardCongr_hom_app_app, AddMonCat.zeroHom_apply, CategoryTheory.MorphismProperty.LeftFraction₂.map_add, groupHomology.mapShortComplexH1_zero, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app_assoc, CategoryTheory.ShortComplex.RightHomologyData.wp, SimplicialObject.Splitting.IndexSet.fac_pull_assoc, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₁, CategoryTheory.Bicategory.Adjunction.homEquiv₂_symm_apply, CategoryTheory.PreGaloisCategory.endEquivSectionsFibers_π, CategoryTheory.Sieve.pushforward_apply, CategoryTheory.Bicategory.InducedBicategory.Hom.category_id_hom, CategoryTheory.LaxFunctor.comp_mapId, CategoryTheory.ShiftedHom.mk₀_zero, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_assoc, CategoryTheory.down_comp_assoc, CategoryTheory.Pseudofunctor.map₂_left_unitor_assoc, HomologicalComplex.homotopyCofiber.inrX_fstX_assoc, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_φ, CategoryTheory.GrothendieckTopology.Cover.Arrow.ext_iff, CategoryTheory.ShortComplex.leftHomologyMap_sub, CategoryTheory.Bicategory.Pith.comp_of, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, CategoryTheory.Adjunction.homEquiv_naturality_left_square, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, LightCondensed.ihomPoints_symm_comp, CategoryTheory.NonPreadditiveAbelian.add_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.yoneda_map_app, CategoryTheory.OplaxFunctor.map₂_associator_app, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, CategoryTheory.ShortComplex.RightHomologyData.wp_assoc, groupHomology.mapShortComplexH2_zero, CategoryTheory.StrictPseudofunctorCore.map₂_left_unitor, CategoryTheory.Bicategory.Lan.existsUnique, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.typeEquiv_functor_obj_val_obj, AlgebraicGeometry.Spec.map_surjective, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_as_app, CategoryTheory.Oplax.OplaxTrans.Modification.vcomp_app, CategoryTheory.Bicategory.eqToHomTransIso_refl_refl, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', CategoryTheory.Limits.biproduct.ι_π_assoc, CategoryTheory.curryingIso_hom_toFunctor_obj_map, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition', CategoryTheory.FreeBicategory.mk_left_unitor_inv, AlgebraicGeometry.Scheme.SpecToEquivOfField_eq_iff, CategoryTheory.Limits.Cone.equiv_inv_pt, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Grp_Class.comp_zpow, SSet.OneTruncation₂.nerveHomEquiv_id, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Comon.uniqueHomToTrivial_default_hom, CategoryTheory.Bicategory.mateEquiv_vcomp, CategoryTheory.Pseudofunctor.StrongTrans.comp_app, CategoryTheory.InducedCategory.homLinearEquiv_apply, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, CategoryTheory.yonedaCommGrpGrpObj_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.ShrinkHoms.id_def, AlgebraicGeometry.pointsPi_surjective_of_isAffine, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.conjugateEquiv_symm_id, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_right_symm, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id_symm, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_pullbackObjUnitToUnit, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, CochainComplex.IsKInjective.nonempty_homotopy_zero, CategoryTheory.nerve.functorOfNerveMap_map, CategoryTheory.Mon.hom_injective, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_functor_obj_ι_app, CategoryTheory.Functor.prod'_μ_fst, homOfEq_heq, CategoryTheory.Bicategory.Adj.comp_τl_assoc, CategoryTheory.StrictPseudofunctor.mk'_obj, CategoryTheory.ShortComplex.exact_iff_iCycles_pOpcycles_zero, CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, CategoryTheory.Oplax.OplaxTrans.StrongCore.naturality_hom, CategoryTheory.Bicategory.Adj.forget₁_mapId, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inl, CategoryTheory.ShortComplex.exact_iff_kernel_ι_comp_cokernel_π_zero, CategoryTheory.Localization.liftNatTrans_add, CategoryTheory.Abelian.Ext.mk₀_addEquiv₀_apply, CategoryTheory.MonoidalCategory.externalProductBifunctor_map_app, CategoryTheory.Limits.BinaryBicone.toBiconeFunctor_obj_π, CategoryTheory.sum.inrCompInrCompInverseAssociator_hom_app_down, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, SimplicialObject.Splitting.PInfty_comp_πSummand_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.Limits.IsZero.unique_to, CategoryTheory.SingleObj.id_as_one, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Functor.PreservesHomology.preservesKernels, CategoryTheory.LocallyDiscrete.id_as, SSet.Subcomplex.range_eq_ofSimplex, CategoryTheory.Oplax.OplaxTrans.homCategory_id_as_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, HomologicalComplex.dTo_eq_zero, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_apply_f, CategoryTheory.ShortComplex.opcyclesMap_sub, CategoryTheory.NonPreadditiveAbelian.add_def, Opens.mayerVietorisSquare_X₃, AddMonCat.hom_zero, Rep.diagonalHomEquiv_symm_apply, CategoryTheory.BicategoricalCoherence.left'_iso, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_associator, CategoryTheory.ULiftHom.down_map, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_inv, CategoryTheory.ShortComplex.opcyclesMap'_sub, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_hom_app, CategoryTheory.ShortComplex.RightHomologyMapData.neg_φQ, CategoryTheory.Functor.RepresentableBy.homEquiv_eq, CategoryTheory.Bicategory.LeftExtension.ofCompId_right, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_id, CategoryTheory.linearYoneda_obj_map, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.CountableCategory.countableHom, CategoryTheory.Functor.mapComposableArrowsObjMk₁Iso_inv_app, PresheafOfModules.homEquivOfIsLocallyBijective_symm_apply, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CommRingCat.HomTopology.instCompactSpaceHomOfIsTopologicalRingOfT1SpaceOfCarrier, CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.prodOpEquiv_inverse_map, HomotopyCategory.isZero_quotient_obj_iff, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_apply, CategoryTheory.Oplax.LaxTrans.naturality_naturality_assoc, CategoryTheory.CategoryOfElements.map_map_coe, SemiNormedGrp.hom_sub, CategoryTheory.Linear.comp_apply, CategoryTheory.ShortComplex.HasLeftHomology.of_zeros, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.DifferentialObject.d_squared_apply, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.StrictPseudofunctor.id_mapComp_hom, AlgebraicGeometry.Spec.map_injective, CategoryTheory.Presheaf.functorToRepresentables_map, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, CategoryTheory.Linear.smulOfRingMorphism_smul_eq', CategoryTheory.yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, ModuleCat.Iso.homCongr_eq_arrowCongr, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm_assoc, CategoryTheory.Subobject.factorThru_eq_zero, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, TopologicalSpace.OpenNhds.comp_apply, CategoryTheory.finrank_hom_simple_simple_eq_one_iff, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_μ, CategoryTheory.Limits.MulticospanIndex.multicospan_map, CategoryTheory.Functor.FullyFaithful.homMulEquiv_apply, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Subgroupoid.full_arrow_eq_iff, CategoryTheory.ShortComplex.leftHomologyMap'_neg, CategoryTheory.Limits.opCompYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Cat.Hom₂.eqToHom_toNatTrans, CategoryTheory.prodFunctorToFunctorProd_map, CategoryTheory.Cat.Hom₂.id_app, CategoryTheory.Adjunction.comp_homEquiv, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.coyonedaEvaluation_map_down, CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap, FunctorToFintypeCat.naturality, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, HomologicalComplex.mapBifunctor₂₃.d₂_eq, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.prod_id_fst, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, CategoryTheory.SimplicialThickening.compFunctor_obj, CategoryTheory.Limits.prod.inl_snd, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f, CategoryTheory.WithTerminal.map₂_app, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_inv_as_app, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_obj, SimplexCategory.instFiniteHom, AlgebraicGeometry.Scheme.stalkMap_congr_assoc, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_as_app, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Limits.KernelFork.condition_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, CategoryTheory.Functor.FullyFaithful.homEquiv_apply, CategoryTheory.Preadditive.sub_comp_assoc, CategoryTheory.Limits.zero_of_source_iso_zero, CategoryTheory.preadditiveYonedaObj_obj_carrier, LightCondensed.finYoneda_map, CategoryTheory.Monad.algebraPreadditive_homGroup_sub_f, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_id, CategoryTheory.tensorRightHomEquiv_symm_naturality, AddCommGrpCat.hom_zero, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_π_apply, CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial_inv, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, CategoryTheory.ShortComplex.LeftHomologyData.f'_π_assoc, MonObj.mopEquivCompForgetIso_hom_app_unmop, CategoryTheory.Types.instReflectsLimitsOfSizeForgetTypeHom, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, CategoryTheory.Cat.Hom.isoMk_hom, CochainComplex.IsKProjective.homotopyZero_def, CategoryTheory.Bicategory.pentagon_hom_hom_inv_hom_hom_assoc, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, SSet.horn.yonedaEquiv_ι, CategoryTheory.Functor.toPseudoFunctor'_obj, AlgebraicGeometry.pointsPi_injective, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_naturality, HomologicalComplex.biprod_inl_snd_f_assoc, CategoryTheory.Join.isoMkFunctor_hom_app, CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂_homEquiv, CategoryTheory.conjugateEquiv_symm_comp_assoc, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_inv_τr, CategoryTheory.Subfunctor.ofSection_eq_range, Homotopy.nullHomotopicMap_f_eq_zero, SemimoduleCat.Iso.homCongr_eq_arrowCongr, TopologicalSpace.Opens.comp_apply, CategoryTheory.Localization.SmallHom.equiv_equiv_symm, CategoryTheory.Bicategory.LeftLift.w_assoc, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, HomologicalComplex₂.totalAux.d₂_eq, CategoryTheory.ShortComplex.cyclesMap_neg, CategoryTheory.Cat.Hom.toNatIso_hom, CategoryTheory.ShortComplex.toCycles_comp_leftHomologyπ_assoc, CategoryTheory.Abelian.LeftResolution.karoubi.F'_map_f, CochainComplex.mappingCone.d_snd_v, CategoryTheory.Preadditive.isColimitCoforkOfCokernelCofork_desc, CategoryTheory.Bicategory.whiskerRightIso_hom, CategoryTheory.Bicategory.associatorNatIsoLeft_inv_app, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, CategoryTheory.ForgetEnrichment.equivFunctor_map, TopologicalSpace.OpenNhds.val_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, CategoryTheory.Limits.IsColimit.existsUnique, CategoryTheory.Equalizer.firstObjEqFamily_inv, CategoryTheory.Limits.prod.inr_fst_assoc, SheafOfModules.unitHomEquiv_symm_comp, CategoryTheory.MonoidalPreadditive.whiskerLeft_add, CategoryTheory.yonedaEquiv_apply, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_hom, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp, CategoryTheory.Bicategory.rightUnitor_inv_naturality, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, CategoryTheory.sum.inlCompInrCompInverseAssociator_inv_app_down_down, CategoryTheory.Limits.biprod.inlCokernelCofork_π, CategoryTheory.ForgetEnrichment.equivInverse_map, HomologicalComplex₂.d_f_comp_d_f, CategoryTheory.Limits.kernelForkBiproductToSubtype_cone, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_ε_unmop_unmop, CategoryTheory.MonoidalCategory.whiskerLeft_dite, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, HomologicalComplex.add_f_apply, CategoryTheory.Functor.equivCatHom_symm_apply, CategoryTheory.CatEnriched.id_hComp_id, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_apply, CategoryTheory.InducedCategory.homEquiv_apply, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, CategoryTheory.Limits.KernelFork.IsLimit.isZero_of_mono, CategoryTheory.Bicategory.Adjunction.homEquiv₁_apply, CategoryTheory.StrictPseudofunctorCore.map₂_associator, CategoryTheory.Bicategory.Prod.swap_map₂, AlgebraicGeometry.Scheme.Modules.Hom.zero_app, AlgebraicGeometry.tilde.map_sub, CategoryTheory.Limits.colimit.homIso_hom, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.LocallyDiscrete.comp_as, SemimoduleCat.hom_zsmul, CategoryTheory.tensorRightHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, HomologicalComplex₂.d₁_eq_zero', Mathlib.Tactic.Bicategory.naturality_rightUnitor, CategoryTheory.Bicategory.Pith.whiskerRight_iso_inv, HomologicalComplex₂.D₁_D₁_assoc, TopologicalSpace.Opens.infLELeft_apply_mk, CategoryTheory.Cat.Hom₂.comp_app_assoc, CategoryTheory.Subgroupoid.le_iff, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.prod.rightUnitor_map, CategoryTheory.congrArg_cast_hom_right, CategoryTheory.Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.InjectiveResolution.of_def, FintypeCat.instFiniteHom, SemimoduleCat.hom_nsmul, ModuleCat.extendRestrictScalarsAdj_homEquiv_apply, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁, CategoryTheory.Coyoneda.objOpOp_inv_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, SheafOfModules.freeHomEquiv_freeMap, CategoryTheory.Functor.prod'_δ_snd, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom_assoc, CategoryTheory.Iso.homCongr_trans, CategoryTheory.Bicategory.rightUnitor_inv_congr, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.GradedObject.zero_apply, CategoryTheory.IsPushout.zero_top, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.Pseudofunctor.map₂_left_unitor, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Bicategory.unitors_inv_equal, CategoryTheory.Bicategory.Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Bicategory.Pith.leftUnitor_inv_iso_hom, CategoryTheory.nonempty_hom_of_preconnected_groupoid, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CategoryTheory.Bicategory.leftZigzagIso_symm, CategoryTheory.ShortComplex.homologyMap'_zero, CategoryTheory.CommSq.instHasLift, CategoryTheory.Preadditive.IsIso.comp_right_eq_zero, CategoryTheory.StrictPseudofunctor.mk''_mapId, CategoryTheory.Bicategory.associator_inv_naturality_middle, CategoryTheory.Limits.Sigma.ι_π_assoc, CategoryTheory.Bicategory.associator_naturality_right_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Presheaf.freeYonedaHomEquiv_comp, CategoryTheory.Bicategory.hom_inv_whiskerRight_whiskerRight_assoc, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_of_mono₂, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_isIso, CategoryTheory.Groupoid.vertexGroup.inv_eq_inv, CategoryTheory.Bicategory.prod_id_fst, CategoryTheory.Bicategory.triangle_assoc_comp_left, CategoryTheory.Limits.IsColimit.homIso_hom, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, CategoryTheory.Limits.kernel.condition_apply, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, CategoryTheory.Limits.equalizer_as_kernel, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃_assoc, CategoryTheory.WideSubcategory.id_def, HomologicalComplex.mapBifunctor₂₃.d₃_eq, CategoryTheory.Bicategory.associator_inv_naturality_right, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_symm_apply, CategoryTheory.GrpObj.comp_zpow, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, HomologicalComplex.extend.d_none_eq_zero', CategoryTheory.ShortComplex.HomologyMapData.add_left, groupCohomology.congr, CategoryTheory.Functor.IsStronglyCocartesian.universal_property', CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_hom, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃, HomologicalComplex₂.D₁_D₁, PresheafOfModules.freeYonedaEquiv_symm_app, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.Limits.biproduct.matrixEquiv_symm_apply, CategoryTheory.zero_map, CategoryTheory.Sheaf.isLocallySurjective_iff_epi, CategoryTheory.InjectiveResolution.complex_d_comp, CategoryTheory.leftDistributor_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_hom, CategoryTheory.FreeBicategory.mk_right_unitor_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, CategoryTheory.Limits.PreservesCokernel.of_iso_comparison, CategoryTheory.Bicategory.whiskerLeft_comp, HomologicalComplex.single_obj_d, CategoryTheory.CategoryOfElements.homMk_coe, CategoryTheory.tensorLeftHomEquiv_naturality, HomologicalComplex₂.D₂_D₁_assoc, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.FinCategory.categoryAsType_comp, CategoryTheory.eqToHom_heq_id_cod, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, CategoryTheory.Pseudofunctor.ObjectProperty.ι_app_toFunctor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Bicategory.conjugateEquiv_symm_id, CategoryTheory.Discrete.sumEquiv_inverse_map, CategoryTheory.ShortComplex.ShortExact.comp_δ, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv, CategoryTheory.Limits.kernelBiprodFstIso_hom, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Bicategory.conjugateEquiv_apply, CategoryTheory.Bicategory.prod_whiskerRight_fst, CategoryTheory.Limits.monoFactorisationZero_e, CategoryTheory.Functor.FullyFaithful.map_bijective, CategoryTheory.Adjunction.eq_homEquiv_apply, CategoryTheory.Pseudofunctor.DescentData.comp_hom, CategoryTheory.Bicategory.whiskerRight_comp_symm, CategoryTheory.ThinSkeleton.fromThinSkeleton_map, CategoryTheory.Endofunctor.Algebra.ext_iff, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_inv_τl, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, SimplicialObject.Splitting.cofan_inj_eq, CategoryTheory.Bicategory.Pith.comp₂_iso_hom_assoc, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.MonObj.ofRepresentableBy_one, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, starEquivCostar_apply_fst, CategoryTheory.ShortComplex.cyclesMap_sub, CategoryTheory.IsPullback.inr_fst, HomologicalComplex₂.D₂_D₂, CategoryTheory.Cat.leftUnitor_hom_app, CategoryTheory.Functor.curry₃_obj_obj_map_app, CategoryTheory.Bicategory.associator_eqToHom_hom_assoc, CategoryTheory.LocallyDiscrete.subsingleton2Hom, CategoryTheory.ShortComplex.Homotopy.g_h₃_assoc, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.FinCategory.asTypeToObjAsType_map, CategoryTheory.Bicategory.whiskerRight_id, Homotopy.prevD_succ_cochainComplex, HomologicalComplex.d_toCycles_assoc, CategoryTheory.kernel_zero_of_nonzero_from_simple, ContinuousMap.Homotopy.heq_path_of_eq_image, CategoryTheory.ShortComplex.Splitting.id, CochainComplex.ι_mapBifunctorShift₂Iso_hom_f_assoc, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.Iso.homFromEquiv_symm_apply, CategoryTheory.OplaxFunctor.map₂_leftUnitor_app, CategoryTheory.MonObj.comp_mul_assoc, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_apply, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans, HomologicalComplex.xPrevIsoSelf_comp_dTo, CategoryTheory.uliftCoyonedaEquiv_uliftCoyoneda_map, SheafOfModules.unitHomEquiv_symm_freeHomEquiv_apply, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Functor.RepresentableBy.coyoneda_homEquiv, CategoryTheory.TwoSquare.equivNatTrans_apply, CategoryTheory.ShortComplex.Homotopy.add_h₁, CochainComplex.HomComplex.Cochain.toSingleMk_add, CategoryTheory.coyonedaEquiv_comp, CategoryTheory.uliftYonedaEquiv_symm_apply_app, groupHomology.d₃₂_comp_d₂₁_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom, CategoryTheory.Abelian.Ext.mk₀_neg, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂, CategoryTheory.Limits.isoZeroOfEpiZero_hom, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, CategoryTheory.Limits.PushoutCocone.isoMk_inv_hom, CategoryTheory.Limits.colimitYonedaHomIsoLimit'_π_apply, CategoryTheory.WithInitial.liftFromUnderComp_inv_app, CategoryTheory.conjugateEquiv_symm_apply_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_hom_app_unmop_app, CategoryTheory.Limits.WalkingParallelPair.inclusionWalkingReflexivePair_map, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality, FGModuleCat.instFiniteHomModuleCatObjIsFG, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_app, CategoryTheory.MonoidalPreadditive.add_whiskerRight, CategoryTheory.LaxFunctor.id_mapId, AlgebraicGeometry.SpecToEquivOfLocalRing_apply_snd_coe, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagram_map, CategoryTheory.nerve.homEquiv_apply, Rep.homEquiv_apply_hom, CategoryTheory.isIso_iff_coyoneda_map_bijective, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_hom_comp_π_assoc, CategoryTheory.Limits.Types.binaryCoproductCocone_ι_app, CategoryTheory.conjugateEquiv_apply_app, CategoryTheory.StrictPseudofunctor.id_obj, CategoryTheory.Limits.biproductBiproductIso_hom, CochainComplex.HomComplex.δ_v, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, CategoryTheory.Groupoid.isThin_iff, CategoryTheory.Limits.kernelBiproductπIso_hom, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, CategoryTheory.Abelian.tfae_epi, CategoryTheory.Oplax.StrongTrans.homCategory_id_as_app, CategoryTheory.Limits.compYonedaSectionsEquiv_apply_app, CategoryTheory.Idempotents.add_def, HomologicalComplex.d_comp_d_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, CategoryTheory.MonoidalOpposite.unmopEquiv_inverse_map_unmop, CategoryTheory.ShortComplex.HomologyMapData.neg_left, HomologicalComplex₂.ιTotal_totalFlipIso_f_inv_assoc, AlgebraicGeometry.AffineSpace.homOverEquiv_symm_apply_coe, CategoryTheory.Limits.BinaryBicone.sndKernelFork_ι, CategoryTheory.Bicategory.InducedBicategory.eqToHom_hom, CochainComplex.fromSingle₀Equiv_apply_coe, CategoryTheory.Functor.FullyFaithful.nonempty_iff_map_bijective, SimplexCategory.σ_injective, CategoryTheory.CategoryOfElements.to_comma_map_right, CategoryTheory.Pseudofunctor.Grothendieck.ext_iff, CategoryTheory.Functor.prod'_ε_fst, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, CategoryTheory.Functor.imageSieve_eq_imageSieve, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.frobeniusMorphism_mate, CategoryTheory.Subgroupoid.IsWide.eqToHom_mem, HomologicalComplex.dgoToHomologicalComplex_obj_d, CategoryTheory.Bicategory.lanLiftUnit_desc_assoc, CategoryTheory.Localization.liftNatTrans_zero, CategoryTheory.Limits.BinaryFan.IsLimit.lift'_coe, CategoryTheory.tensorRightHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, CategoryTheory.Cat.Hom.isoMk_inv, CategoryTheory.ShortComplex.Homotopy.smul_h₂, CategoryTheory.Bicategory.whiskerLeft_hom_inv, HomotopyCategory.quotient_map_eq_zero_iff, CategoryTheory.Abelian.Pseudoelement.zero_eq_zero', CategoryTheory.Lax.LaxTrans.id_app, CategoryTheory.instSmallHomOfLocallySmall, CategoryTheory.Subobject.factors_add, CategoryTheory.StrictlyUnitaryLaxFunctor.id_obj, CochainComplex.HomComplex.Cochain.neg_v, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CochainComplex.HomComplex.Cochain.sub_v, CategoryTheory.Linear.units_smul_comp, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.f', CategoryTheory.Bicategory.mateEquiv_id_comp_right, CategoryTheory.Adjunction.conjugateEquiv_leftAdjointCompIso_inv, CategoryTheory.Linear.leftComp_apply, CategoryTheory.Bicategory.leftUnitor_comp_inv, CochainComplex.mappingCone.liftCochain_v_descCochain_v, CategoryTheory.Functor.Linear.map_smul, Homotopy.nullHomotopicMap'_f_eq_zero, CategoryTheory.Presheaf.restrictedULiftYoneda_obj_map, CategoryTheory.Pseudofunctor.mapComp_id_left, CategoryTheory.Iso.unop2_inv, CategoryTheory.Limits.IsBilimit.total, CategoryTheory.Sieve.mem_ofObjects_iff, CategoryTheory.SemiadditiveOfBinaryBiproducts.comp_add, SheafOfModules.GeneratingSections.epi, CategoryTheory.Bicategory.postcomp_obj, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CategoryTheory.Limits.FormalCoproduct.Hom.fromIncl_asSigma, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φH, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Comma.opFunctor_map, HomologicalComplex₂.d₂_eq_zero, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_whisker_right, HomologicalComplex.mapBifunctorMapHomotopy.comm₁, CategoryTheory.StrictPseudofunctor.comp_mapComp_hom, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf', CategoryTheory.Biprod.unipotentLower_inv, Action.smul_hom, CategoryTheory.ShortComplex.cyclesMap'_sub, CategoryTheory.Bicategory.leftZigzagIso_hom, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, CategoryTheory.ShortComplex.homologyMap'_sub, CategoryTheory.Sieve.equalizer_apply, CategoryTheory.ShortComplex.Splitting.rightHomologyData_ι, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inl, CategoryTheory.Equalizer.firstObjEqFamily_hom, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range', CategoryTheory.Functor.toOplaxFunctor'_obj, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, CategoryTheory.ShortComplex.hasHomology_of_hasCokernel, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, Bicategory.Opposite.bicategory_associator_hom_unop2, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso_hom, CategoryTheory.StrictPseudofunctor.comp_mapId_hom, CategoryTheory.Idempotents.Karoubi.hom_eq_zero_iff, CategoryTheory.Limits.biprod.inr_fst, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, CategoryTheory.ShortComplex.Homotopy.sub_h₁, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_mul, CategoryTheory.Limits.IsBilimit.binary_total, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_symm_apply_φ, CochainComplex.mappingCone.inr_triangleδ, Bicategory.Opposite.unop2_id_bop, CategoryTheory.kernelCokernelCompSequence.ι_φ, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, CategoryTheory.Bicategory.LeftExtension.ofCompId_left_as, CategoryTheory.Oplax.OplaxTrans.associator_hom_as_app, CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal_inv, MonCat.oneHom_apply, CategoryTheory.Idempotents.Karoubi.inclusionHom_apply, CategoryTheory.End.smul_left, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom, CategoryTheory.Preadditive.isSeparator_iff, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, HomologicalComplex.fromOpcycles_d_assoc, CategoryTheory.Pseudofunctor.toOplax_mapComp, Bicategory.Opposite.unopFunctor_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_μ_unmop_app, CategoryTheory.Functor.FullyFaithful.homNatIso_inv_app_down, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, CategoryTheory.Grp.Hom.hom_zpow, CategoryTheory.BicategoricalCoherence.tensorRight_iso, CategoryTheory.IsPullback.zero_top, CategoryTheory.Bicategory.inv_hom_whiskerRight_whiskerRight, CategoryTheory.Functor.IsStronglyCartesian.map_self, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₃_assoc, CategoryTheory.isPullback_of_cofan_isVanKampen, CategoryTheory.Functor.CorepresentableBy.ofIsoObj_homEquiv, CategoryTheory.Bicategory.Prod.sectR_mapComp_inv, CategoryTheory.Bicategory.Prod.fst_mapComp_hom, CategoryTheory.MonoidalCategory.prodMonoidal_whiskerRight, SemimoduleCat.ofHom₂_hom_apply_hom, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_naturality', CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_hom_inv_assoc, CategoryTheory.HomOrthogonal.matrixDecomposition_id, CochainComplex.mappingCone.id_X, CategoryTheory.Functor.Full.map_surjective, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.uliftCoyonedaEquiv_symm_apply_app, CategoryTheory.Bicategory.id_whiskerLeft_symm, CategoryTheory.Pseudofunctor.mapComp'_naturality_1, CategoryTheory.Functor.representableByUliftFunctorEquiv_symm_apply_homEquiv, CommRingCat.HomTopology.continuous_precomp, Hom.op_inj, CategoryTheory.ShortComplex.Homotopy.refl_h₃, CochainComplex.HomComplex.Cochain.single_zero, CategoryTheory.ShortComplex.homologyMap'_add, CategoryTheory.actionAsFunctor_map, CategoryTheory.ShortComplex.SnakeInput.δ_L₃_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f, AddCommGrpCat.asHom_injective, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.Limits.coker.condition_assoc, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app, CategoryTheory.Preadditive.nsmul_comp, SimplicialObject.Splitting.IndexSet.eqId_iff_len_eq, CategoryTheory.Localization.Preadditive.add'_map, SimplicialObject.Splitting.IndexSet.ext', CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_of, CategoryTheory.Limits.BinaryBicone.inl_snd_assoc, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_hom_app_unmop_unmop, CategoryTheory.Bicategory.LeftLift.IsKan.fac_assoc, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr, CategoryTheory.linearYoneda_obj_obj_carrier, CategoryTheory.Preadditive.isSeparating_iff, CategoryTheory.Pretriangulated.Triangle.smul_hom₂, CategoryTheory.Limits.Cotrident.IsColimit.homIso_natural, CategoryTheory.Bicategory.postcomposing_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_inv, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app_assoc, CategoryTheory.Bicategory.Adj.rightUnitor_inv_τl, CategoryTheory.Coyoneda.objOpOp_hom_app, CategoryTheory.Bicategory.Adj.Hom₂.conjugateEquiv_symm_τr, CategoryTheory.Abelian.FunctorCategory.coimageImageComparison_app, CategoryTheory.ShortComplex.iCycles_g, CategoryTheory.FreeBicategory.mk_vcomp, CategoryTheory.LaxFunctor.PseudoCore.mapCompIso_inv, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.nerve.homEquiv_edgeMk, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, AlgebraicGeometry.pointEquivClosedPoint_apply_coe, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapId, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, ModuleCat.homLinearEquiv_symm_apply, HomologicalComplex.truncGE'.d_comp_d, ModuleCat.hom_smul, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Limits.cokernel.π_zero_isIso, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.Pseudofunctor.map₂_associator_app, CategoryTheory.Cat.rightUnitor_hom_toNatTrans, CategoryTheory.Functor.homObjEquiv_symm_apply_app, CategoryTheory.Adjunction.mkOfHomEquiv_counit_app, CategoryTheory.Bicategory.Prod.snd_map₂, Path.hom_heq_of_cons_eq_cons, CategoryTheory.Functor.map_inv', Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.Preadditive.cokernelCoforkOfCofork_ofπ, CategoryTheory.Lax.OplaxTrans.naturality_comp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, HomologicalComplex.extend.d_none_eq_zero, CochainComplex.HomComplex.CohomologyClass.toSmallShiftedHom_mk, SemimoduleCat.homLinearEquiv_apply, CategoryTheory.Bicategory.leftUnitor_inv_whiskerRight_assoc, CategoryTheory.Functor.RepresentableBy.comp_homEquiv_symm, CategoryTheory.Bicategory.whiskerRight_comp_symm_assoc, CategoryTheory.Functor.equivCatHom_apply, HomologicalComplex.cylinder.πCompι₀Homotopy.nullHomotopicMap_eq, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.ShortComplex.Homotopy.neg_h₁, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, HomologicalComplex.mapBifunctor₂₃.ιOrZero_eq_zero, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality_assoc, CochainComplex.ConnectData.d_comp_d, CategoryTheory.NatTrans.app_nsmul, HomologicalComplex.sub_f_apply, CochainComplex.mappingCone.d_snd_v'_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapId, CategoryTheory.whiskerLeft_def, CategoryTheory.NatTrans.prod_app_fst, HomologicalComplex.homotopyCofiber.descSigma_ext_iff, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_inv, AlgebraicGeometry.IsLocalIso.le_of_isZariskiLocalAtSource, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom, CategoryTheory.Bicategory.Adj.rightUnitor_hom_τr, CategoryTheory.Iso.eHomCongr_comp_assoc, CategoryTheory.Adjunction.homEquiv_unit, Hom.mop_inj, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Join.opEquiv_inverse_map_inclRight_op, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, HomologicalComplex.d_pOpcycles, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_inv_iso_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp_id_right, CategoryTheory.Preadditive.comp_neg, CategoryTheory.conjugateEquiv_leftUnitor_hom, CategoryTheory.Sum.functorEquiv_inverse_map, CategoryTheory.Limits.isIsoZero_iff_source_target_isZero, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Bicategory.comp_whiskerRight, CategoryTheory.BicategoricalCoherence.left_iso, CategoryTheory.Limits.Pi.ι_π_of_ne, CategoryTheory.Presheaf.isLocallySurjective_toSheafify, CategoryTheory.ShortComplex.add_τ₃, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, CategoryTheory.Limits.limitCompCoyonedaIsoCone_hom_app, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc, Bicategory.Opposite.bicategory_leftUnitor_hom_unop2, CategoryTheory.uliftYonedaEquiv_apply, CategoryTheory.Limits.WidePullbackShape.mkCone_π_app, CategoryTheory.Iso.homCongr_comp, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Bicategory.comp_whiskerLeft_symm, CategoryTheory.Bicategory.inv_whiskerRight, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_inv, CategoryTheory.Bicategory.Pith.id₂_iso_inv, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.ShortComplex.Homotopy.refl_h₂, CategoryTheory.Arrow.equivSigma_apply_snd_snd, CategoryTheory.bijection_natural, HomologicalComplex.fromOpcycles_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, ChainComplex.toSingle₀Equiv_apply_coe, HomologicalComplex.homologyι_opcyclesToCycles_assoc, CategoryTheory.Limits.Fork.IsLimit.existsUnique, CategoryTheory.Functor.FullyFaithful.homEquiv_symm_apply, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, CategoryTheory.Monad.algebraPreadditive_homGroup_add_f, PresheafOfModules.zsmul_app, Condensed.finYoneda_map, FDRep.instFiniteDimensionalHom, CategoryTheory.NormalEpi.w, CategoryTheory.Limits.coequalizer_as_cokernel, CategoryTheory.Localization.small_of_hasSmallLocalizedHom, CategoryTheory.CartesianClosed.homEquiv_apply_eq, CategoryTheory.Classifier.SubobjectRepresentableBy.homEquiv_eq, SimplexCategory.instSubsingletonHomMkOfNatNat, CategoryTheory.Bicategory.mateEquiv_symm_apply', SSet.Subcomplex.instSubsingletonHomToSSetBot, CategoryTheory.Oplax.LaxTrans.naturality_naturality, CategoryTheory.Limits.PullbackCone.combine_π_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id, CategoryTheory.Localization.homEquiv_eq, CategoryTheory.Oplax.StrongTrans.naturality_comp, MonObj.mopEquiv_functor_obj_mon_one_unmop, CategoryTheory.CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, CategoryTheory.Grp.Hom.hom_hom_div, CategoryTheory.Limits.HasZeroObject.zeroIsoTerminal_hom, CategoryTheory.OplaxFunctor.map₂_leftUnitor_assoc, CategoryTheory.Functor.toPseudoFunctor'_map, CategoryTheory.Bicategory.conjugateEquiv_id_comp_right_apply, CategoryTheory.Oplax.OplaxTrans.associator_inv_as_app, CategoryTheory.IsPushout.inl_snd', CategoryTheory.PreGaloisCategory.toAut_surjective_isGalois_finite_family, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality', CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_δ_assoc, CategoryTheory.Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, CategoryTheory.ShortComplex.π₁Toπ₂_comp_π₂Toπ₃, CategoryTheory.Bicategory.Adjunction.homEquiv₂_apply, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.Limits.Pi.ι_π, CategoryTheory.PreGaloisCategory.toAut_hom_app_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc, SimplicialObject.Splitting.IndexSet.mk_snd_coe, CategoryTheory.Congruence.equivalence, CategoryTheory.Preadditive.smul_iso_hom, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_right, CategoryTheory.Adjunction.compPreadditiveYonedaIso_inv_app_app_apply, CategoryTheory.Bicategory.Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, FintypeCat.toProfinite_map_hom_hom_apply, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.Preadditive.commGrpEquivalence_functor_obj_grp_inv, CategoryTheory.BicartesianSq.of_has_biproduct₂, Rep.coindVEquiv_symm_apply_coe, CategoryTheory.whiskerRight_def, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_left_unitor, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom, HomologicalComplex₂.d_f_comp_d_f_assoc, CategoryTheory.Pseudofunctor.toLax_mapComp, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, HomologicalComplex.homotopyCofiber.inlX_sndX_assoc, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Types.instFullForgetTypeHom, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.CommSq.shortComplex_f, CategoryTheory.CatEnriched.id_hComp_heq, CategoryTheory.MonObj.comp_one, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Limits.FintypeCat.productEquiv_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left, CategoryTheory.Discrete.instSubsingletonDiscreteHom, CategoryTheory.uliftYonedaEquiv_symm_map, CategoryTheory.Functor.prod_ε_snd, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π, HomologicalComplex.homologyι_comp_fromOpcycles, CategoryTheory.Functor.cones_obj, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.NonPreadditiveAbelian.sub_sub_sub, CategoryTheory.Lax.LaxTrans.naturality_comp, CategoryTheory.Presieve.preZeroHypercover_I₀, CondensedMod.isDiscrete_iff_isDiscrete_forget, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, FintypeCat.comp_apply, CategoryTheory.Limits.zero_of_target_iso_zero', CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Limits.biprod.fstKernelFork_ι, CategoryTheory.Limits.biproduct.matrix_desc_assoc, FintypeCat.uSwitchEquiv_naturality, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, AlgebraicTopology.DoldKan.QInfty_f_0, HomologicalComplex.homologyMap_neg, CategoryTheory.ShortComplex.RightHomologyData.wι_assoc, CategoryTheory.Oplax.StrongTrans.id_naturality_inv, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.InjectiveResolution.ι_f_succ, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, CategoryTheory.Adjunction.compUliftCoyonedaIso_inv_app_app_down, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.MonObj.one_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc, FintypeCat.equivEquivIso_symm_apply_symm_apply, CategoryTheory.presheafHom_obj, CategoryTheory.FinCategory.categoryAsType_id, CategoryTheory.PreGaloisCategory.evaluation_injective_of_isConnected, prevD_eq_toPrev_dTo, CategoryTheory.Limits.IsColimit.homEquiv_apply, CategoryTheory.Limits.comp_zero, CategoryTheory.Limits.monoFactorisationZero_m, CategoryTheory.Preadditive.neg_iso_hom, CategoryTheory.Groupoid.vertexGroup_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, CategoryTheory.Oplax.LaxTrans.id_app, CategoryTheory.NatTrans.app_add, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_as_app, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, symmetrify_reverse, CategoryTheory.Functor.whiskerLeft_obj_map_bijective_of_isCoverDense, CategoryTheory.Pseudofunctor.map₂_right_unitor_assoc, CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.ext_iff, CategoryTheory.GrpObj.inv_comp_assoc, CategoryTheory.Bicategory.Prod.sectL_mapComp_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, CategoryTheory.Limits.preservesKernel_zero, CategoryTheory.Abelian.Ext.mk₀_smul, CategoryTheory.prod_id', CategoryTheory.Bicategory.associator_inv_naturality_left, CategoryTheory.Functor.map_zero, CategoryTheory.opEquiv_apply, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, SemiNormedGrp.zero_apply, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Functor.prod_η_snd, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero_assoc, AlgebraicTopology.AlternatingFaceMapComplex.d_squared, CategoryTheory.Limits.inr_pushoutZeroZeroIso_hom, CategoryTheory.Bicategory.leftUnitor_inv_naturality, CategoryTheory.Quiv.homEquivOfIso_apply, CategoryTheory.ShortComplex.opcyclesMap_add, CategoryTheory.WithTerminal.lift_map, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_inv_hom, CategoryTheory.Limits.biprod.decomp_hom_to, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, CategoryTheory.Biprod.inr_ofComponents, CategoryTheory.Equivalence.inverseFunctor_map, TopCat.presheafToTop_obj, CategoryTheory.Bicategory.unitors_equal, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Biprod.ofComponents_snd, CategoryTheory.Arrow.mk_injective, CategoryTheory.Cat.associator_inv_app, CategoryTheory.Bicategory.associator_naturality_right, CategoryTheory.Bicategory.whiskerRightIso_inv, CategoryTheory.NonPreadditiveAbelian.sub_add, CategoryTheory.Bicategory.precomposing_map_app, FundamentalGroupoid.instSubsingletonHomPUnit, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, CategoryTheory.Limits.biproduct.lift_matrix_assoc, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, CategoryTheory.Bicategory.Prod.sectL_obj, CategoryTheory.Limits.biproduct.lift_desc_assoc, CategoryTheory.SingleObj.inv_as_inv, HomologicalComplex.mapBifunctorMapHomotopy.zero₁, CategoryTheory.Subgroupoid.coe_comp_coe, CategoryTheory.Preadditive.epi_iff_cancel_zero, Homotopy.dNext_zero_chainComplex, HomologicalComplex.mapBifunctor₂₃.d₃_eq_zero, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.MonoidalOpposite.tensorIso_hom_app_unmop, CategoryTheory.Sheaf.ΓHomEquiv_naturality_left, CategoryTheory.Limits.biproduct.matrixEquiv_apply, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d_assoc, FintypeCat.hom_ext_iff, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, CategoryTheory.Cat.rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.DifferentialObject.ext_iff, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.g'_eq, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_apply_f, CategoryTheory.Linear.smulOfRingMorphism_smul_eq, CategoryTheory.Preadditive.comp_sum_assoc, HomologicalComplex₂.d₁_eq, CategoryTheory.Oplax.LaxTrans.id_naturality, CategoryTheory.Comon.ComonToMonOpOp_map, MonCat.hom_one, CategoryTheory.Pseudofunctor.ObjectProperty.ι_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Limits.kernelBiprodFstIso_inv, CategoryTheory.ShortComplex.Homotopy.smul_h₀, CochainComplex.HomComplex.Cochain.ofHom_neg, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Pseudofunctor.mapComp_id_right_hom, CategoryTheory.yonedaMonObj_map, Homotopy.prevD_chainComplex, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_of_mono₃, CategoryTheory.Bicategory.conjugateEquiv_symm_of_iso, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.naturality_assoc, CategoryTheory.ShortComplex.Homotopy.smul_h₃, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Subgroupoid.mem_discrete_iff, CategoryTheory.Subfunctor.ofSection_obj, CategoryTheory.uliftYonedaEquiv_naturality, CategoryTheory.ShortComplex.cyclesMap_smul, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_as_app, CategoryTheory.Functor.curry₃_obj_map_app_app, CategoryTheory.Grothendieck.map_map, CategoryTheory.Lax.LaxTrans.vComp_naturality_naturality, CategoryTheory.Bicategory.prod_whiskerRight_snd, CategoryTheory.CatEnrichedOrdinary.hComp_id, CategoryTheory.CatCenter.app_add, CategoryTheory.Limits.CokernelCofork.condition, CategoryTheory.conjugateEquiv_counit_symm, CochainComplex.HomComplex.Cochain.zero_v, SimplicialObject.Splitting.IndexSet.eqId_iff_mono, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_map₂, CategoryTheory.Limits.cokernel.condition, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_hom_τr, CategoryTheory.StrictPseudofunctor.comp_mapId_inv, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr_assoc, TopCat.Sheaf.extend_hom_app, CategoryTheory.Functor.map_add, CategoryTheory.OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, CategoryTheory.CatEnrichedOrdinary.hComp_comp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.conj_eqToHom_iff_heq', CategoryTheory.NonPreadditiveAbelian.sub_zero, CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.g, CategoryTheory.Bicategory.Adj.id_τl, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inr, CategoryTheory.Bicategory.Adj.comp_τl, CategoryTheory.ShortComplex.leftHomologyMap_add, ModuleCat.homAddEquiv_symm_apply_hom, CategoryTheory.IsPushout.zero_bot, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inr, CategoryTheory.Abelian.LeftResolution.karoubi.F_map_f, CategoryTheory.Preadditive.smul_iso_inv, CategoryTheory.IsPushout.zero_left, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.PrelaxFunctor.mkOfHomFunctors_toPrelaxFunctorStruct, CategoryTheory.Bicategory.Comonad.comul_assoc_flip_assoc, CategoryTheory.Limits.Fork.IsLimit.homIso_symm_apply, HomotopicalAlgebra.RightHomotopyClass.mk_surjective, HomologicalComplex.mapBifunctor₁₂.d₂_eq_zero, CategoryTheory.Biprod.unipotentUpper_hom, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, Prefunctor.star_fst, CategoryTheory.Functor.homEquivOfIsLeftKanExtension_symm_apply, CategoryTheory.OplaxFunctor.map₂_associator_app_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapComp, CategoryTheory.Monad.adj_counit, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CommRingCat.HomTopology.precompHomeomorph_apply, CategoryTheory.ShortComplex.Homotopy.ofEq_h₂, FintypeCat.id_apply, CategoryTheory.Presieve.preZeroHypercover_X, CategoryTheory.LaxFunctor.map₂_associator_app_assoc, CategoryTheory.Adjunction.CoreHomEquivUnitCounit.homEquiv_unit, CategoryTheory.SingleObj.comp_as_mul, CategoryTheory.Bicategory.conjugateEquiv_comp_id_right_apply, CategoryTheory.Subobject.bot_factors_iff_zero, CategoryTheory.Functor.uncurry_map_app, CategoryTheory.MonoidalPreadditive.whiskerLeft_zero, CategoryTheory.MonoidalOpposite.mopMopEquivalence_inverse_map_unmop_unmop, CategoryTheory.PreGaloisCategory.functorToContAction_map, CategoryTheory.ActionCategory.uncurry_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans, CategoryTheory.Lax.LaxTrans.id_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, HomologicalComplex.iCycles_d, SSet.hoFunctor.unitHomEquiv_eq, HomologicalComplex.mapBifunctor₁₂.ιOrZero_eq_zero, CategoryTheory.ShortComplex.Homotopy.comm₃, CategoryTheory.NonPreadditiveAbelian.sub_comp, CategoryTheory.Bicategory.whiskerLeft_rightUnitor_assoc, prevD_nat, CategoryTheory.Limits.pullbackZeroZeroIso_inv_fst, CategoryTheory.Bicategory.leftUnitor_inv_whiskerRight, CategoryTheory.InjectiveResolution.extMk_zero, CategoryTheory.Idempotents.idem_of_id_sub_idem, ChainComplex.mk_congr_succ_X₃, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.ShortComplex.homologyMap'_neg, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_associator, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_index, CategoryTheory.Functor.map_zsmul, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₂_assoc, CategoryTheory.CostructuredArrow.prodInverse_obj, CategoryTheory.nerve.homEquiv_comp, CategoryTheory.Limits.pullbackZeroZeroIso_hom_snd, FGModuleCat.instFiniteHom, CategoryTheory.Pretriangulated.Triangle.rotate_mor₃, groupCohomology.cochainsMap_zero, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_obj, CategoryTheory.ShortComplex.homologyι_comp_fromOpcycles_assoc, HomologicalComplex.dTo_comp_dFrom, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, CategoryTheory.FreeBicategory.mk_id, CategoryTheory.nerve.mk₁_homEquiv_apply, CategoryTheory.ShortComplex.LeftHomologyMapData.neg_φH, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.Preadditive.neg_comp_neg_assoc, CategoryTheory.Preadditive.kernelForkOfFork_ofι, CategoryTheory.Functor.toOplaxFunctor_obj, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_left, CategoryTheory.Bicategory.instIsIsoHomLeftZigzagHom, CategoryTheory.Limits.colimitYonedaHomIsoLimit_π_apply, CategoryTheory.Limits.FintypeCat.productEquiv_symm_comp_π_apply, CategoryTheory.Bicategory.Prod.fst_map₂, HomologicalComplex₂.D₁_shape, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, CategoryTheory.heq_comp_eqToHom_iff, CategoryTheory.WithTerminal.liftToTerminal_map, CategoryTheory.Precoverage.mem_finite_iff, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app, CategoryTheory.Bicategory.Equivalence.right_triangle, CategoryTheory.Functor.toPseudoFunctor_mapComp, CategoryTheory.prodFunctor_map, CategoryTheory.Preadditive.neg_comp_neg, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_obj, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_app, CategoryTheory.Bicategory.InducedBicategory.forget_map, CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer', CategoryTheory.Pretriangulated.Triangle.sub_hom₁, CategoryTheory.Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.Bicategory.associator_eqToHom_inv, CategoryTheory.Bicategory.Equivalence.left_triangle, CategoryTheory.Localization.Preadditive.homEquiv_apply, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, AddCommGrpCat.homAddEquiv_symm_apply_hom, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app_assoc, CategoryTheory.Arrow.equivSigma_apply_fst, CategoryTheory.InducedCategory.homEquiv_symm_apply_hom, CategoryTheory.OplaxFunctor.mapId'_eq_mapId, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.Limits.cokernelBiprodInlIso_inv, CategoryTheory.DifferentialObject.d_squared, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one_assoc, AddCommGrpCat.hom_sub, AddGrpCat.zero_apply, CategoryTheory.Presieve.uncurry_singleton, CategoryTheory.Join.mapWhiskerRight_app, CategoryTheory.PrelaxFunctor.map₂_eqToHom, Mathlib.Tactic.Bicategory.naturality_associator, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom, CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors_map₂, CategoryTheory.Presheaf.isLocallyInjective_toSheafify, CategoryTheory.Bicategory.LanLift.existsUnique, CategoryTheory.conjugateEquiv_symm_iso, CategoryTheory.ComposableArrows.IsComplex.zero_assoc, CategoryTheory.ObjectProperty.monoModSerre_zero_iff, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φH, CategoryTheory.Iso.op2_hom_unop2, CategoryTheory.Equivalence.symmEquivFunctor_map, CochainComplex.HomComplex.Cochain.fromSingleMk_add, CategoryTheory.Limits.Cofork.IsColimit.homIso_apply_coe, CategoryTheory.finrank_endomorphism_eq_one, Bicategory.Opposite.bicategory_leftUnitor_inv_unop2, CategoryTheory.CatEnriched.hComp_id_heq, CategoryTheory.Bicategory.Prod.sectR_mapId_inv, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp, CategoryTheory.Limits.image.ι_zero, CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext, CategoryTheory.Limits.kernel.ι_of_mono, CategoryTheory.Limits.inl_of_isLimit, CategoryTheory.Pretriangulated.contractibleTriangle_mor₂, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app, CategoryTheory.Adjunction.conjugateEquiv_leftAdjointIdIso_hom, CategoryTheory.Monad.adj_unit, CategoryTheory.Subfunctor.ofSection_eq_range', CategoryTheory.MonObj.mul_comp, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq_zero, groupCohomology.map₁_one, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_π_app_eq_sum, CategoryTheory.PrelaxFunctor.map₂_hom_inv, CategoryTheory.Limits.coneOfIsSplitMono_π_app, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf, CategoryTheory.Functor.partialRightAdjointHomEquiv_map, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapComp, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.linearYoneda_map_app, CategoryTheory.Join.isoMkFunctor_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_base, TopModuleCat.hom_add, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.Functor.CorepresentableBy.homEquiv_eq, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_fst_apply, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.ShortComplex.Splitting.g_s, CategoryTheory.Abelian.LeftResolution.karoubi.F'_obj_p, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_hom_app, CategoryTheory.Hom.mul_def, CochainComplex.IsKInjective.homotopyZero_def, CategoryTheory.ShortComplex.Homotopy.ofEq_h₀, CategoryTheory.ShortComplex.HomologyMapData.zero_left, CategoryTheory.Grp.Hom.hom_hom_inv, HomologicalComplex.opcyclesToCycles_homologyπ, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app, CategoryTheory.MonoidalCategory.dite_whiskerRight, CommRingCat.HomTopology.isEmbedding_pushout, CategoryTheory.Presieve.preZeroHypercover_f, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_inv, CategoryTheory.Localization.SmallHom.equiv_mkInv, CategoryTheory.Bicategory.pentagon_inv_inv_hom_hom_inv, AlgebraicGeometry.IsLocalIso.le_of_isLocalAtSource, CategoryTheory.Subgroupoid.mem_map_iff, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, CategoryTheory.Adjunction.homAddEquiv_sub, CategoryTheory.tensorLeftHomEquiv_tensor, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_of_epi₁, CategoryTheory.Presheaf.restrictedULiftYoneda_map_app, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_id_as_app, SSet.Subcomplex.yonedaEquiv_coe, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, CategoryTheory.Limits.biprod.sndKernelFork_ι, ComplexShape.Embedding.AreComplementary.hom_ext, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Preadditive.forkOfKernelFork_pt, CategoryTheory.FreeBicategory.mk_left_unitor_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, SimplicialObject.Splitting.IndexSet.mk_fst, AddCommGrpCat.hom_nsmul, HomotopyCategory.quot_mk_eq_quotient_map, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.eqToHom_comp_heq_iff, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, HomologicalComplex.units_smul_f_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CategoryTheory.Limits.reflexivePair.compRightIso_hom_app, CategoryTheory.Preadditive.sum_comp, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_assoc, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, CategoryTheory.CatEnrichedOrdinary.Hom.mk_comp, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_apply_fst, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, CategoryTheory.Functor.partialLeftAdjointHomEquiv_map, CategoryTheory.Limits.ker.condition, HomologicalComplex.homotopyCofiber.inrX_fstX, CochainComplex.HomComplex.Cochain.leftUnshift_v, AlgebraicGeometry.Scheme.IsLocallyDirected.homOfLE_tAux, CategoryTheory.Limits.BinaryBicone.inr_fst_assoc, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three, DerivedCategory.HomologySequence.comp_δ_assoc, CategoryTheory.Comma.equivProd_inverse_map_left, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_inv, SheafOfModules.freeHomEquiv_symm_comp, CategoryTheory.WithTerminal.map_map, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_map, CategoryTheory.CosimplicialObject.cechConerveEquiv_symm_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality', CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, CategoryTheory.Limits.biprod.decomp_hom_from, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, CategoryTheory.Functor.map_smul, CategoryTheory.Iso.homCongr_refl, CategoryTheory.Bicategory.Prod.swap_map, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_uliftYoneda_map, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.InitiallySmall.exists_small_weakly_initial_set, CategoryTheory.Bicategory.Pith.rightUnitor_hom_iso, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, CochainComplex.ConnectData.map_f, CategoryTheory.Functor.Additive.map_add, CategoryTheory.NatTrans.toCatHom₂_id, CategoryTheory.PreGaloisCategory.toAut_surjective_isGalois, CategoryTheory.Bicategory.Comonad.counit_comul_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, CategoryTheory.Join.opEquiv_functor_map_op_edge, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁, Bicategory.Opposite.op2_rightUnitor_inv, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Pseudofunctor.id_mapId, CategoryTheory.yonedaMonObj_obj_coe, CategoryTheory.Functor.map_eq_zero_iff, CategoryTheory.Discrete.productEquiv_counitIso_hom_app, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, SemiNormedGrp.hom_add, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, CategoryTheory.Biprod.unipotentLower_hom, CategoryTheory.BicategoricalCoherence.right'_iso, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, CategoryTheory.Join.mapIsoWhiskerRight_hom_app, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, CategoryTheory.Limits.zero_of_to_zero, Action.FintypeCat.toEndHom_apply, CategoryTheory.Bicategory.pentagon_assoc, CategoryTheory.Limits.Fork.ofι_π_app, CategoryTheory.Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.yoneda_obj_obj, CategoryTheory.Join.opEquiv_functor_map_op_inclRight, CategoryTheory.uliftYonedaEquiv_comp, CategoryTheory.Limits.biprod.desc_eq, SSet.stdSimplex.face_obj, CategoryTheory.Bicategory.Adj.id_τr, CategoryTheory.Functor.sectionsEquivHom_naturality, Homotopy.nullHomotopicMap_f, CategoryTheory.Subgroupoid.IsWide.wide, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, CategoryTheory.Limits.snd_of_isColimit, CategoryTheory.Oplax.StrongTrans.Modification.id_app, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, CategoryTheory.Bicategory.prod_rightUnitor_inv_fst, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_of_epi₂, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHom_unop, CategoryTheory.Subgroupoid.isThin_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso_inv_app_unmop_app, CategoryTheory.Adjunction.restrictFullyFaithful_homEquiv_apply, CategoryTheory.Limits.biproduct.lift_desc, SSet.stdSimplex.map_apply, HomologicalComplex.d_toCycles, CategoryTheory.LaxFunctor.mapComp'_eq_mapComp, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, CochainComplex.HomComplex.Cochain.ofHom_sub, CategoryTheory.conjugateEquiv_whiskerRight, CategoryTheory.Oplax.LaxTrans.naturality_comp, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_hom_τl, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.bijection_symm_apply_id, CategoryTheory.MonoidalPreadditive.add_tensor, AlgebraicGeometry.ΓSpec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, TopModuleCat.hom_zsmul, CategoryTheory.ShortComplex.opcyclesMap_neg, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app, CategoryTheory.Limits.id_zero, CategoryTheory.Free.single_comp_single, CategoryTheory.Functor.toPseudoFunctor_map, CategoryTheory.Limits.cokernelBiprodInrIso_inv, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂'_homEquiv, CategoryTheory.IsPushout.inr_fst, CategoryTheory.Pretriangulated.contractible_distinguished₂, Rep.resIndAdjunction_homEquiv_symm_apply, CategoryTheory.Functor.isRepresentedBy_iff, CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.Localization.homEquiv_comp, CategoryTheory.ShortComplex.Homotopy.symm_h₀, CategoryTheory.rightDistributor_inv, CategoryTheory.Bicategory.whiskerLeft_isIso, CategoryTheory.Enriched.FunctorCategory.homEquiv_comp, Action.hom_injective, CategoryTheory.ShortComplex.Homotopy.equivSubZero_symm_apply, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.Oplax.StrongTrans.isoMk_hom_as_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp, CategoryTheory.Functor.homologySequenceδ_comp_assoc, Action.nsmul_hom, HomologicalComplex.d_pOpcycles_assoc, CategoryTheory.Bicategory.conjugateIsoEquiv_apply_inv, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_leftAdd, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_functor_map, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_counitIso_inv_app, CategoryTheory.IsPullback.inl_snd, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁_assoc, CategoryTheory.PrelaxFunctor.map₂_inv_hom_isIso, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc, CategoryTheory.ProjectiveResolution.of_def, CommRingCat.HomTopology.instT2SpaceHomOfCarrier, CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, HomologicalComplex₂.totalAux.d₂_eq', CategoryTheory.IsCofiltered.inf_objs_exists, CategoryTheory.Bicategory.eqToHomTransIso_refl_right, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_π_apply, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_apply_homEquiv, TopologicalSpace.OpenNhds.id_apply, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_assoc, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, Homotopy.zero, Rep.coindMap'_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.Functor.map_sub, CategoryTheory.Localization.Construction.lift_map, CategoryTheory.ProjectiveResolution.π_f_succ, CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles_assoc, HomologicalComplex₂.totalAux.d₁_eq, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans, CategoryTheory.CatEnriched.hComp_assoc, CategoryTheory.yonedaEquiv_yoneda_map, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_inv_app_unmop, Preorder.subsingleton_hom, CategoryTheory.Bicategory.pentagon_inv_inv_hom_inv_inv, CategoryTheory.PrelaxFunctor.map₂_inv_hom_isIso_assoc, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst_assoc, CategoryTheory.IsPushout.of_hasBinaryCoproduct, CategoryTheory.Idempotents.zero_def, CategoryTheory.Subgroupoid.IsNormal.generatedNormal_le, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Abelian.Ext.mk₀_add, CategoryTheory.IsPullback.of_hasBinaryProduct, CategoryTheory.Quotient.functor_homRel_eq_compClosure_eqvGen, CategoryTheory.Limits.imageSubobject_zero, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_inv, CategoryTheory.ShortComplex.rightHomologyι_descOpcycles_π_eq_zero_of_boundary, CategoryTheory.unit_conjugateEquiv_symm, CategoryTheory.CategoryOfElements.comp_val, HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary, CategoryTheory.CatEnrichedOrdinary.Hom.id_eq, Homotopy.extend.hom_eq_zero₁, Path.toList_chain_nonempty, CategoryTheory.PreGaloisCategory.evaluation_aut_bijective_of_isGalois, CategoryTheory.Limits.opCompYonedaSectionsEquiv_apply_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, CategoryTheory.Mon_Class.mul_eq_mul, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.Groupoid.vertexGroup_one, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.LaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, prevD_eq, CategoryTheory.WideSubcategory.comp_def, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id, CategoryTheory.Preadditive.comp_neg_assoc, CategoryTheory.FreeBicategory.preinclusion_map₂, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_inv_iso_inv, HomologicalComplex.mapBifunctor.d₂_eq, CategoryTheory.Bicategory.prod_whiskerLeft_fst, CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_as_app, CommRingCat.HomTopology.precompHomeomorph_symm_apply, AlgebraicGeometry.Scheme.stalkMap_congr_hom_assoc, CategoryTheory.unit_conjugateEquiv, CategoryTheory.OplaxFunctor.map₂_associator_assoc, CategoryTheory.Bicategory.precomp_obj, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, AlgebraicTopology.AlternatingCofaceMapComplex.d_squared, CategoryTheory.Free.embedding_map, CategoryTheory.Limits.biprod.total, CategoryTheory.Limits.cokernel.π_of_zero, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_map_coe, Symmetrify.of_map, CategoryTheory.Pseudofunctor.map₂_whisker_left, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_pt, CategoryTheory.uliftYoneda_obj_map, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.Quiv.adj_homEquiv, CategoryTheory.Triangulated.TStructure.zero, CategoryTheory.Groupoid.isoEquivHom_apply, CategoryTheory.Enriched.FunctorCategory.homEquiv_id, HomologicalComplex.ι_mapBifunctorFlipIso_inv_assoc, CategoryTheory.Groupoid.isoEquivHom_symm_apply_hom, HomologicalComplex.extend_single_d, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc, CategoryTheory.projective_iff_llp_epimorphisms_zero, CategoryTheory.ShortComplex.liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, HomologicalComplex.mapBifunctor.d₁_eq_zero, CategoryTheory.GrothendieckTopology.map_yonedaEquiv', CategoryTheory.Pseudofunctor.StrongTrans.isoMk_hom_as_app, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_φ, CategoryTheory.Bicategory.adjointifyCounit_left_triangle, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc, CategoryTheory.EnrichedOrdinaryCategory.homEquiv_id, CategoryTheory.PreGaloisCategory.instFiniteHomOfIsConnected, CategoryTheory.Localization.homEquiv_symm_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τl, CategoryTheory.rightUnitor_def, Rep.freeLiftLEquiv_apply, CategoryTheory.Functor.curry₃_obj_obj_obj_map, CategoryTheory.ShortComplex.rightHomologyMap'_add, CategoryTheory.Groupoid.invEquiv_apply, HomologicalComplex₂.d₁_eq_zero, CategoryTheory.Lax.StrongTrans.toLax_naturality, CategoryTheory.Functor.mapComposableArrowsObjMk₂Iso_hom_app, CommRingCat.HomTopology.isClosedEmbedding_hom, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, HomologicalComplex.zsmul_f_apply, groupCohomology.mapCocycles₁_one, CategoryTheory.ObjectProperty.epiModSerre_zero_iff, CategoryTheory.Subgroupoid.hom.faithful, SSet.Truncated.HomotopyCategory₂.homMk_surjective, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_symm_apply, CategoryTheory.unitCompPartialBijective_natural, CategoryTheory.SimplicialThickening.functor_map, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, CategoryTheory.WithTerminal.ofCommaMorphism_app, CochainComplex.singleFunctor_obj_d, CategoryTheory.uliftYoneda_obj_obj, CategoryTheory.typeEquiv_counitIso_inv_app_val_app, CategoryTheory.Pseudofunctor.toOplax_mapId, CategoryTheory.dite_comp, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.ShortComplex.LeftHomologyData.f'_π, CategoryTheory.Limits.CokernelCofork.mapIsoOfIsColimit_hom, CategoryTheory.FinCategory.objAsTypeToAsType_map, CategoryTheory.Subobject.mk_eq_bot_iff_zero, CategoryTheory.Localization.SmallHom.equiv_mk, CategoryTheory.eqToHom_comp_heq, CategoryTheory.Preadditive.instMonoNegHom, CategoryTheory.Bicategory.prod_associator_inv_fst, HomologicalComplex.homologyMap_add, CategoryTheory.Bicategory.whiskerLeft_rightUnitor_inv, CategoryTheory.PrelaxFunctor.map₂_hom_inv_assoc, Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal_hom, HomotopicalAlgebra.LeftHomotopyClass.mk_surjective, CategoryTheory.Pretriangulated.Triangle.neg_hom₁, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_eq_eqToHom, SheafOfModules.freeHomEquiv_comp_apply, ContinuousCohomology.MultiInd.d_comp_d_assoc, CategoryTheory.yonedaMon_map_app, SemiNormedGrp.hom_neg, CategoryTheory.shrinkYonedaEquiv_naturality, Hom.opEquiv_apply, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly_assoc, HomologicalComplex.extend_d_to_eq_zero, CategoryTheory.yonedaEquiv_naturality', CategoryTheory.Bicategory.InducedBicategory.bicategory_Hom, CategoryTheory.StrictlyUnitaryLaxFunctor.map_id, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality, Action.sub_hom, FintypeCat.toLightProfinite_map_hom_hom_apply, CategoryTheory.BicategoricalCoherence.tensorRight'_iso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CategoryTheory.Subgroupoid.mem_ker_iff, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_obj, CategoryTheory.Types.instPreservesLimitsOfSizeForgetTypeHom, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, CategoryTheory.Bicategory.prod_Hom, CategoryTheory.Bicategory.Pith.whiskerRight_iso_hom, CategoryTheory.Functor.mapZeroObject_inv, CategoryTheory.Bicategory.comp_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv, CategoryTheory.Functor.cocones_obj, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero, CategoryTheory.Limits.compCoyonedaSectionsEquiv_symm_apply_coe, CategoryTheory.tensorHom_def, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Limits.coker.condition, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply', HomologicalComplex.nsmul_f_apply, CategoryTheory.Types.instIsEquivalenceForgetTypeHom, CategoryTheory.NatTrans.mapElements_map_coe, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv, CategoryTheory.comp_eqToHom_heq_iff, CategoryTheory.Bicategory.hom_inv_whiskerRight_whiskerRight, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, CategoryTheory.Bicategory.Pith.rightUnitor_inv_iso_inv, CategoryTheory.Bicategory.LeftExtension.whiskerIdCancel_right, CategoryTheory.Bicategory.prod_rightUnitor_inv_snd, CategoryTheory.Pretriangulated.Triangle.neg_hom₃, CategoryTheory.NatTrans.app_zero, CategoryTheory.NatTrans.prod'_app_fst, CategoryTheory.Linear.comp_units_smul, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.ShortComplex.Homotopy.refl_h₁, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.Functor.toPreimages_map, CategoryTheory.Bicategory.Pith.associator_hom_iso, CategoryTheory.Limits.KernelFork.condition, CategoryTheory.Presheaf.FamilyOfElementsOnObjects.IsCompatible.familyOfElements_apply, CategoryTheory.Limits.biproduct.fromSubtype_π, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_assoc, CategoryTheory.uliftYonedaEquiv_uliftYoneda_map, CategoryTheory.Localization.SmallShiftedHom.equiv_shift', CategoryTheory.Limits.kernel.ι_of_zero, prevD_eq_zero, CategoryTheory.finrank_hom_simple_simple_eq_zero_iff, CategoryTheory.MonObj.one_comp, CategoryTheory.Quotient.compClosure.congruence, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.ShortComplex.exact_and_epi_g_iff_g_is_cokernel, CategoryTheory.Functor.IsCartesian.universal_property, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Adjunction.mkOfHomEquiv_unit_app, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, CategoryTheory.Bicategory.associator_naturality_left_assoc, CategoryTheory.finrank_hom_simple_simple_eq_zero_of_not_iso, CategoryTheory.StrictPseudofunctorCore.map₂_right_unitor, Condensed.epi_iff_locallySurjective_on_compHaus, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_inv_as_app, groupCohomology.mapShortComplexH2_zero, CategoryTheory.Bicategory.prod_leftUnitor_inv_fst, CategoryTheory.Bicategory.triangle_assoc_comp_right_inv_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app_assoc, CategoryTheory.Limits.MulticospanIndex.parallelPairDiagramOfIsLimit_map, CategoryTheory.NonPreadditiveAbelian.add_zero, CategoryTheory.Limits.Fork.IsLimit.homIso_apply_coe, CategoryTheory.Adjunction.instMonoCoeEquivHomObjHomEquivOfReflectsMonomorphisms, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂, CategoryTheory.Bicategory.hom_inv_whiskerRight, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app, CategoryTheory.InducedCategory.homAddEquiv_symm_apply_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, CategoryTheory.Bicategory.prod_rightUnitor_hom_fst, CategoryTheory.Bicategory.Adjunction.left_triangle, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, FreeGroupoid.congr_comp_reverse, CategoryTheory.LocalizerMorphism.equiv_smallHomMap', Rep.resIndAdjunction_homEquiv_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, CategoryTheory.coyonedaEquiv_naturality, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, Opens.mayerVietorisSquare_X₂, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.GrothendieckTopology.yonedaEquiv_comp, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_comp, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_apply, CategoryTheory.Limits.PushoutCocone.mk_ι_app, CategoryTheory.coyonedaEquiv_apply, CategoryTheory.Lax.OplaxTrans.naturality_naturality, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, CategoryTheory.Limits.compCoyonedaSectionsEquiv_apply_app, SemimoduleCat.homAddEquiv_apply, AddGrpCat.ofHom_injective, CategoryTheory.PreZeroHypercover.shrink_X, CategoryTheory.Functor.PreservesHomology.preservesCokernels, groupHomology.d₁₀_comp_coinvariantsMk, AlgebraicGeometry.LocallyRingedSpace.Hom.ext_iff, CategoryTheory.ShortComplex.HasLeftHomology.of_hasCokernel, CategoryTheory.Preadditive.cokernelCoforkOfCofork_π, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp', CategoryTheory.Limits.biproduct.toSubtype_fromSubtype, CategoryTheory.Bicategory.Prod.fst_mapId_hom, CategoryTheory.Quiv.homOfEq_map_homOfEq, CategoryTheory.Bicategory.triangle_assoc_comp_right_inv, CategoryTheory.Bicategory.associator_naturality_middle, CategoryTheory.Functor.IsStronglyCartesian.universal_property', CategoryTheory.MonObj.comp_pow, CategoryTheory.Bicategory.prod_id_snd, CategoryTheory.Presheaf.isLocallyInjective_forget_iff, CategoryTheory.Functor.comp_homologySequenceδ, CategoryTheory.regularTopology.isLocallySurjective_iff, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CategoryTheory.Limits.cokernelBiprodInrIso_hom, CategoryTheory.Limits.kernel.condition, HomologicalComplex.homotopyCofiber.inlX_desc_f_assoc, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.ShortComplex.LeftHomologyData.wπ_assoc, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Biprod.column_nonzero_of_iso, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.g', CategoryTheory.ShortComplex.smul_τ₃, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.ShortComplex.homologyMap_neg, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, CochainComplex.mappingCone.decomp_from, CategoryTheory.Subgroupoid.IsWide.id_mem, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, AlgebraicTopology.DoldKan.P_succ, CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π_assoc, CategoryTheory.Bicategory.prod_leftUnitor_inv_snd, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, HomologicalComplex.homotopyCofiber.d_fstX, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.unop_neg, CategoryTheory.StrictPseudofunctor.comp_map, CategoryTheory.Bicategory.Adj.Bicategory.rightUnitor_hom_τl, FGModuleCat.ihom_obj, CategoryTheory.Pretriangulated.Triangle.invRotate_mor₁, CategoryTheory.Bicategory.LeftExtension.IsKan.fac_assoc, SimplicialObject.Splitting.cofan_inj_πSummand_eq_id, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_pt, CategoryTheory.CategoryOfElements.ext_iff, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.Limits.biprod.inl_snd, CategoryTheory.Bicategory.leftUnitorNatIso_hom_app, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_fiber, CategoryTheory.Iso.unop2_op_inv, CochainComplex.mappingCone.inr_triangleδ_assoc, CategoryTheory.PrelaxFunctor.map₂_inv, CategoryTheory.Biprod.ofComponents_comp, CategoryTheory.StrictPseudofunctorPreCore.map_comp, CategoryTheory.ShortComplex.HomologyMapData.zero_right, CategoryTheory.Limits.limit.existsUnique, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_inv_τl, CochainComplex.mappingCone.inl_v_snd_v_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHomLeft_op, CategoryTheory.ShortComplex.Homotopy.symm_h₃, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.StrictPseudofunctor.mk''_map, HomologicalComplex.cylinder.inlX_π, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_inverse_map, CategoryTheory.Grp_Class.zpow_comp, Rep.leftRegularHomEquiv_symm_apply, CategoryTheory.Oplax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Comonad.adj_counit, CategoryTheory.ShortComplex.SnakeInput.w₁₃_assoc, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.Adjunction.homAddEquiv_add, Bicategory.Opposite.opFunctor_obj, CategoryTheory.endomorphism_simple_eq_smul_id, CategoryTheory.Bicategory.Prod.sectL_mapId_hom, CategoryTheory.Limits.Sigma.ι_π, TopologicalSpace.Opens.coe_id, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_hom, CategoryTheory.CatCenter.smul_eq', CategoryTheory.ShortComplex.LeftHomologyMapData.add_φH, TopCat.presheafToTypes_map, CommRingCat.HomTopology.isEmbedding_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Functor.mapComposableArrowsObjMk₁Iso_hom_app, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_hom_right, HomologicalComplex.extend.rightHomologyData.d_comp_desc_eq_zero_iff, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, CategoryTheory.Mon_Class.one_eq_one, CategoryTheory.Grp.Hom.hom_pow, CategoryTheory.Functor.prod'_δ_fst, CategoryTheory.Functor.prod'_μ_snd, HomologicalComplex.biprod_inr_fst_f, CategoryTheory.Bicategory.Pith.whiskerLeft_iso_hom, AddCommGrpCat.zero_apply, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.stalkMap_congr_hom, CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup_apply, CategoryTheory.Bicategory.mateEquiv_symm_apply, CategoryTheory.Functor.Elements.initialOfCorepresentableBy_snd, CategoryTheory.Pseudofunctor.map₂_whisker_left_assoc, CategoryTheory.Limits.cokernel.condition_assoc, ModuleCat.ExtendRestrictScalarsAdj.homEquiv_symm_apply, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τr, PresheafOfModules.homEquivOfIsLocallyBijective_apply, TopModuleCat.comp_cokerπ, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso, CategoryTheory.Bicategory.leftUnitor_whiskerRight, CategoryTheory.Limits.IsZero.unique_from, Bicategory.Opposite.homCategory_comp_unop2, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_hom_inv_id, HomologicalComplex.homotopyCofiber.eq_desc, PresheafOfModules.unitHomEquiv_apply_coe, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, Rep.coindResAdjunction_homEquiv_apply, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_fiber, groupCohomology.inhomogeneousCochains.d_comp_d, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.sum.inrCompInrCompInverseAssociator_inv_app_down, CategoryTheory.PreGaloisCategory.exists_autMap, CategoryTheory.conjugateEquiv_symm_comp, CategoryTheory.StrictPseudofunctor.toFunctor_obj, CategoryTheory.Sieve.functorInclusion_app, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_snd, Opens.coe_mayerVietorisSquare_X₁, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc, CategoryTheory.Bicategory.associator_eqToHom_inv_assoc, AlgebraicTopology.DoldKan.Hσ_eq_zero, CochainComplex.ConnectData.d₀_comp, CategoryTheory.StrictPseudofunctor.map_comp, CategoryTheory.Limits.Trident.IsLimit.homIso_apply_coe, CategoryTheory.associator_def, CategoryTheory.Functor.toOplaxFunctor'_map, AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq, HomologicalComplex.tensor_unit_d₂, CategoryTheory.Bicategory.HasLeftKanLift.hasInitial, CategoryTheory.Sheaf.ΓObjEquivHom_naturality_symm, CategoryTheory.Join.opEquiv_inverse_map_inclLeft_op, CategoryTheory.Bicategory.prod_leftUnitor_hom_snd, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply, CategoryTheory.ShortComplex.RightHomologyData.ι_descQ_eq_zero_of_boundary_assoc, ChainComplex.mk'_congr_succ'_d, CategoryTheory.tensorRightHomEquiv_naturality, AlgebraicGeometry.SpecToEquivOfLocalRing_apply_fst, CategoryTheory.Limits.cokernelBiproductιIso_inv, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CochainComplex.IsKProjective.nonempty_homotopy_zero, CategoryTheory.Limits.piPiIso_hom, SimplicialObject.Splitting.IndexSet.fac_pull, CategoryTheory.Groupoid.vertexGroupIsomOfMap_apply, CategoryTheory.StrictlyUnitaryPseudofunctor.mapId_eq_eqToIso, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, CategoryTheory.MorphismProperty.Comma.ext_iff, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.id_obj, CategoryTheory.Bicategory.whiskerLeft_inv_hom_whiskerRight_assoc, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, CategoryTheory.Pseudofunctor.StrongTrans.isoMk_inv_as_app, CategoryTheory.Bicategory.whisker_exchange_assoc, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.AsSmall.up_map_down, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_fst, Hom.opEquiv_symm_apply, CategoryTheory.tensorRightHomEquiv_tensor, CategoryTheory.Hom.mulEquivCongrRight_symm_apply, CategoryTheory.MonObj.mul_comp_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_hom_as_app, CategoryTheory.Limits.kernelBiproductπIso_inv, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₁, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, HomologicalComplex.homologyι_comp_fromOpcycles_assoc, CategoryTheory.Subfunctor.range_eq_ofSection', CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_hom, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, CategoryTheory.unop_add, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Functor.FullyFaithful.homNatIso'_hom_app_down, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv, CategoryTheory.Preadditive.kernelForkOfFork_ι, CategoryTheory.Bicategory.pentagon, CategoryTheory.CatEnrichedOrdinary.Hom.base_comp, CategoryTheory.ShortComplex.Homotopy.comp_h₁, CategoryTheory.ULiftHom.up_map_down, CategoryTheory.Oplax.OplaxTrans.homCategory_comp_as_app, CategoryTheory.Functor.PreOneHypercoverDenseData.multicospanMap_app, CategoryTheory.Pretriangulated.Triangle.zero_hom₁, CategoryTheory.Bicategory.Prod.snd_obj, HomologicalComplex.cylinder.inlX_π_assoc, SheafOfModules.conjugateEquiv_pullbackComp_inv, CategoryTheory.Types.instPreservesColimitsOfSizeForgetTypeHom, TopCat.Presheaf.covering_presieve_eq_self, CategoryTheory.WithTerminal.liftFromOverComp_hom_app, CategoryTheory.Functor.coe_mapAddHom, CategoryTheory.ShortComplex.SnakeInput.L₀_g_δ, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, HomologicalComplex₂.d₂_eq_zero', CategoryTheory.Functor.RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, CategoryTheory.Bicategory.rightUnitor_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc, HomologicalComplex₂.ιTotal_totalFlipIso_f_hom_assoc, CategoryTheory.ShortComplex.Splitting.leftHomologyData_π, CategoryTheory.Abelian.Ext.mk₀_sum, CategoryTheory.Lax.OplaxTrans.vComp_naturality_naturality, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, CategoryTheory.Limits.prod.inl_snd_assoc, FintypeCat.equivEquivIso_symm_apply_apply, CategoryTheory.Types.hom_eq_coe, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two, HomologicalComplex.d_comp_d', CategoryTheory.Limits.bicone_ι_π_ne_assoc, MonObj.mopEquiv_counitIso_hom_app_hom_unmop, CategoryTheory.regularTopology.isLocallySurjective_sheaf_of_types, CategoryTheory.Limits.IsColimit.homEquiv_symm_naturality, CategoryTheory.Prod.snd_map, imageToKernel_epi_of_zero_of_mono, CategoryTheory.Limits.HasZeroMorphisms.zero_comp, HomologicalComplex.zero_f, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', CategoryTheory.CatEnrichedOrdinary.id_hComp, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, CategoryTheory.OplaxFunctor.map₂_rightUnitor_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom, CategoryTheory.nerve.homEquiv_id, CategoryTheory.StructuredArrow.w_prod_snd, CochainComplex.mkHom_f_succ_succ, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_id, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_eq_zero, CategoryTheory.Limits.BinaryBicone.toBiconeFunctor_map_hom, CategoryTheory.ConcreteCategory.hom_injective, CategoryTheory.Prod.fac'_assoc, CategoryTheory.Functor.isIso_ranAdjunction_homEquiv_iff, CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget, CategoryTheory.LocallyDiscrete.mkPseudofunctor_map, CochainComplex.mappingCone.d_snd_v_assoc, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionHomLeft_unop, CategoryTheory.HomOrthogonal.matrixDecomposition_comp, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc, CategoryTheory.Limits.Multicofork.map_ι_app, CochainComplex.shiftFunctor_map_f, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.Lax.OplaxTrans.id_naturality, CategoryTheory.isCommMonObj_iff_isMulCommutative, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.ShortComplex.cyclesMap'_zero, CochainComplex.mappingCone.d_snd_v', CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_iff_epi₁, CategoryTheory.ShortComplex.zero_τ₃, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, CategoryTheory.ShortComplex.HasRightHomology.of_hasCokernel, CategoryTheory.Limits.biproduct.ι_π_ne, CategoryTheory.CoreSmallCategoryOfSet.functor_map, CategoryTheory.Pretriangulated.contractibleTriangleFunctor_map_hom₃, CategoryTheory.GrothendieckTopology.uliftYonedaIsoYoneda_hom_app_val_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, AlgebraicTopology.DoldKan.Γ₀_map_app, CategoryTheory.PrelaxFunctor.mapFunctor_map, CategoryTheory.ObjectProperty.leftOrthogonal.map_bijective_of_isTriangulated, CategoryTheory.ShortComplex.Homotopy.sub_h₃, CategoryTheory.Bicategory.whiskerRight_congr, CategoryTheory.Limits.biproduct.fromSubtype_π_assoc, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois_apply, CategoryTheory.Prod.hom_ext_iff, CategoryTheory.Limits.Cone.equiv_inv_π, CategoryTheory.ShortComplex.Homotopy.trans_h₂, Action.FintypeCat.quotientToEndHom_mk, CategoryTheory.ShortComplex.kernel_ι_comp_cokernel_π_comp_cokernelToAbelianCoimage, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, CategoryTheory.Bicategory.LeftLift.whisker_unit, AlgebraicTopology.DoldKan.Q_f_0_eq, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_symm_apply, CategoryTheory.Triangulated.TStructure.zero_of_isLE_of_isGE, CategoryTheory.ShortComplex.RightHomologyData.wι, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, HomologicalComplex.mapBifunctor.d_eq, CategoryTheory.prod_comp_fst, CategoryTheory.IsPullback.zero_left, CategoryTheory.Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryTheory.Sheaf.isLocallyInjective_forget, CategoryTheory.ShortComplex.iCycles_g_assoc, CategoryTheory.Bicategory.prod_homCategory_id_fst, SingleObj.toHom_apply, CategoryTheory.OplaxFunctor.map₂_leftUnitor, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₁_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Sieve.uliftNatTransOfLe_app_down_coe, CategoryTheory.Bicategory.conjugateEquiv_symm_comp, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.ShortComplex.Exact.mono_g_iff, ModuleCat.hom_sum, CategoryTheory.ShortComplex.SnakeInput.w₀₂, CategoryTheory.ShortComplex.rightHomologyMap_zero, CategoryTheory.ShortComplex.exact_iff_i_p_zero, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_assoc, CategoryTheory.Limits.Bicone.ofLimitCone_ι, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.Bicategory.pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.CommSq.right_adjoint_hasLift_iff, CategoryTheory.Limits.biprod.map_eq, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π_assoc, starEquivCostar_apply_snd, CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_snd_apply, CategoryTheory.StrictPseudofunctor.mk'_map, CategoryTheory.Abelian.Pseudoelement.zero_morphism_ext', CategoryTheory.Bicategory.mateEquiv_hcomp, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_obj, CategoryTheory.subsingleton_of_unop, CategoryTheory.Iso.homCongr_apply, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.Lax.LaxTrans.naturality_naturality, CategoryTheory.Bicategory.Adj.leftUnitor_inv_τl, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, Bicategory.Opposite.op2_rightUnitor_hom, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, CategoryTheory.PreGaloisCategory.card_hom_le_card_fiber_of_connected, CategoryTheory.Bicategory.whiskerLeft_eqToHom, Homotopy.ofEq_hom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, CategoryTheory.Bicategory.Pith.id₂_iso_hom, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_comp, HomologicalComplex₂.D₂_shape, CategoryTheory.Adjunction.homEquiv_naturality_right_square_iff, CategoryTheory.conjugateEquiv_counit, CategoryTheory.Mon.Hom.hom_mul, CategoryTheory.Bicategory.associator_hom_congr, CochainComplex.IsKProjective.Qh_map_bijective, Mathlib.Tactic.Bicategory.naturality_leftUnitor, Bicategory.Opposite.unopFunctor_obj, Rep.coindIso_inv_hom_hom, CochainComplex.mappingCone.d_fst_v_assoc, CategoryTheory.tensor_sum, CategoryTheory.Preadditive.mono_iff_isZero_kernel', CategoryTheory.ShortComplex.LeftHomologyData.wi, Action.zero_hom, CategoryTheory.Hom.inv_def, CategoryTheory.Limits.WalkingMultispan.instSubsingletonHomRight, CategoryTheory.Prod.fac_assoc, ModuleCat.hom_nsmul, CategoryTheory.Functor.prod_map, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_inl, SimplicialObject.Splitting.IndexSet.id_snd_coe, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.unopHom_apply, CategoryTheory.Bicategory.pentagon_inv_inv_hom_inv_inv_assoc, CategoryTheory.Functor.ranges_directed, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Functor.toOplaxFunctor_mapComp, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_assoc, CategoryTheory.Preadditive.isCoseparating_iff, CategoryTheory.InducedCategory.homAddEquiv_apply, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, CategoryTheory.MonoidalPreadditive.tensor_zero, CategoryTheory.Bicategory.Comonad.comul_assoc, groupCohomology.subtype_comp_d₀₁_assoc, CategoryTheory.sum.inrCompInlCompAssociator_inv_app_down_down, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, CategoryTheory.Limits.pullback_map_diagonal_isPullback, CategoryTheory.Functor.partialLeftAdjointHomEquiv_map_comp, CategoryTheory.Bicategory.comp_whiskerLeft, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CategoryTheory.Adjunction.homAddEquiv_symm_zero, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, TopCat.Presheaf.presieveOfCovering.indexOfHom_spec, CategoryTheory.ShortComplex.sub_τ₁, CategoryTheory.Functor.RepresentableBy.homEquiv_comp, CategoryTheory.OplaxFunctor.mapComp_naturality_left, CategoryTheory.conjugateEquiv_rightUnitor_hom, CategoryTheory.Lax.StrongTrans.naturality_id, CategoryTheory.Bicategory.LeftLift.whiskerHom_right, CategoryTheory.Mat_.add_apply, CategoryTheory.Bicategory.prod_associator_hom_fst, CategoryTheory.Grp_Class.inv_comp, CategoryTheory.CategoryOfElements.π_map, CategoryTheory.IsPushout.of_isBilimit, PresheafOfModules.neg_app, CategoryTheory.Bicategory.LeftExtension.ofCompId_hom, CategoryTheory.Functor.prod_ε_fst, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_as_app, CategoryTheory.Limits.walkingParallelFamilyEquivWalkingParallelPair_unitIso_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv, CategoryTheory.Bicategory.prod_homCategory_comp_fst, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero, CategoryTheory.instIsMonHomInvHomOfIsCommMonObj, HomologicalComplex.homotopyCofiber.inlX_sndX, CategoryTheory.Functor.RepresentableBy.isRepresentedBy, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₂, CategoryTheory.Linear.homCongr_apply, CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.StrictlyUnitaryLaxFunctor.id_map, CategoryTheory.ShortComplex.Homotopy.add_h₀, HomologicalComplex.truncGE'.d_comp_d_assoc, CategoryTheory.ShortComplex.cyclesMap_zero, CategoryTheory.Limits.asEmptyCocone_ι_app, ModuleCat.homEquiv_extendScalarsComp, Total.ext_iff, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_apply_snd, dNext_comp_left, CategoryTheory.CommSq.left_adjoint_hasLift_iff, CategoryTheory.Pseudofunctor.mapComp_id_left_inv, CategoryTheory.ShortComplex.cyclesMap'_smul, CategoryTheory.Idempotents.Karoubi.sum_hom, SemimoduleCat.hom_zero, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φH, CategoryTheory.WithInitial.pseudofunctor_mapId, CategoryTheory.sum.inlCompInlCompAssociator_inv_app_down, CategoryTheory.Sieve.uliftFunctorInclusion_app, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τr, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_whisker_left, CategoryTheory.conjugateEquiv_mateEquiv_vcomp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, HomologicalComplex.homotopyCofiber.inlX_d, HomologicalComplex.mapBifunctor₂₃.d₁_eq, CategoryTheory.ShiftedHom.opEquiv'_symm_apply, CategoryTheory.GrpObj.div_comp_assoc, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_right_addition, CategoryTheory.ConcreteCategory.hom_bijective, CategoryTheory.Bicategory.Comonad.counit_def, CategoryTheory.NonPreadditiveAbelian.lift_sub_lift, RingCat.moduleCatRestrictScalarsPseudofunctor_map, AddCommGrpCat.kernelIsoKer_inv_comp_ι, CategoryTheory.LaxFunctor.map₂_associator, CategoryTheory.Limits.PullbackCone.isoMk_inv_hom, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.Bicategory.associator_inv_naturality_left_assoc, CategoryTheory.Monad.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.ShortComplex.HasRightHomology.of_hasKernel, CategoryTheory.Grp_Class.comp_div, CategoryTheory.OplaxFunctor.mapComp_id_right_assoc, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.Bicategory.whiskerLeftIso_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapId, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.Comma.equivProd_inverse_map_right, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_hom, CategoryTheory.tensorObj_def, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.mateEquiv_conjugateEquiv_vcomp, CategoryTheory.Iso.unop2_hom, CategoryTheory.OplaxFunctor.mapComp_assoc_right, CategoryTheory.Bicategory.mateEquiv_eq_iff, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, HomologicalComplex.ιMapBifunctorOrZero_eq_zero, CategoryTheory.Arrow.equivSigma_symm_apply_hom, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.Preadditive.comp_sum, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₃, CategoryTheory.Limits.biproduct.fromSubtype_eq_lift, CategoryTheory.Functor.prod_μ_fst, CategoryTheory.Bicategory.LeftLift.ofIdComp_right, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionRight_op, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_inv, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, CategoryTheory.NatTrans.prod_app_snd, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, CategoryTheory.Limits.Cotrident.IsColimit.homIso_symm_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Bicategory.postcomposing_map_app, Bicategory.Opposite.op2_comp, CategoryTheory.Bicategory.pentagon_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality, groupCohomology.d₁₂_comp_d₂₃, CategoryTheory.yonedaGrpObj_map, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Limits.eq_zero_of_epi_kernel, CategoryTheory.Pseudofunctor.StrongTrans.Modification.id_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, CategoryTheory.Bicategory.whiskerRight_comp, CategoryTheory.ObjectProperty.isLocal.homEquiv_apply, CategoryTheory.Limits.IsZero.map, CategoryTheory.CatCenter.smul_eq, CategoryTheory.Bicategory.rightUnitorNatIso_inv_app, CategoryTheory.Functor.RepresentableBy.homEquiv_unop_comp, CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, CategoryTheory.Pseudofunctor.StrongTrans.associator_inv_as_app, Homotopy.symm_hom, Bicategory.Opposite.op2_leftUnitor_hom, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom, CategoryTheory.Linear.comp_smul, CategoryTheory.MonoidalClosed.uncurry_injective, CategoryTheory.Bicategory.Comonad.comul_counit_assoc, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHom_unop, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Functor.IsCocartesian.universal_property, CategoryTheory.Bicategory.congr_whiskerLeft, CochainComplex.ι_mapBifunctorShift₂Iso_hom_f, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv, CategoryTheory.Mon.uniqueHomFromTrivial_default_hom, CategoryTheory.ComposableArrows.isComplex₂_iff, CategoryTheory.Functor.FullyFaithful.map_surjective, CategoryTheory.Preadditive.comp_zsmul, CategoryTheory.Pseudofunctor.toLax_mapId, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.ShiftedHom.mk₀_add, SimplicialObject.Splitting.IndexSet.instEpiSimplexCategoryE, SheafOfModules.Presentation.map_relations_I, HomologicalComplex₂.D₁_totalShift₁XIso_hom, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv, CategoryTheory.Functor.hom_obj, CategoryTheory.Functor.shiftMap_zero, HomologicalComplex₂.D₂_totalShift₁XIso_hom, CategoryTheory.Subgroupoid.mem_sInf, MonObj.mopEquiv_functor_map_hom_unmop, CategoryTheory.Localization.homEquiv_apply, ComplexShape.Embedding.homEquiv_symm_apply, CategoryTheory.Oplax.OplaxTrans.isoMk_hom_as_app, CategoryTheory.Cat.leftUnitor_hom_toNatTrans, CategoryTheory.StructuredArrow.prodFunctor_obj, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_hom_assoc, CategoryTheory.Bicategory.whiskerLeft_inv_hom_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_π_app, CategoryTheory.Bicategory.Adj.comp_τr_assoc, CategoryTheory.ShortComplex.toCycles_comp_leftHomologyπ, CategoryTheory.Bicategory.whisker_assoc_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.δ_toBiprod_assoc, CategoryTheory.Preadditive.add_comp, SSet.stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, CategoryTheory.conjugateEquiv_comm, SimplicialObject.Splitting.cofan_inj_comp_app, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_three, PresheafOfModules.sub_app, CategoryTheory.GrpObj.comp_div, AlgebraicTopology.NormalizedMooreComplex.d_squared, HomologicalComplex.homologyMap_sub, MonObj.mopEquivCompForgetIso_inv_app_unmop, CategoryTheory.Limits.kernelSubobject_factors_iff, CategoryTheory.Functor.isIso_lanAdjunction_homEquiv_symm_iff, CategoryTheory.Preadditive.add_comp_assoc, TopCat.subpresheafToTypes_map_coe, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, CategoryTheory.Prod.fac, CategoryTheory.MorphismProperty.isLocal_iff, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom, CategoryTheory.Bicategory.associator_eqToHom_hom, CategoryTheory.Mon_Class.comp_pow, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_fst, AlgebraicTopology.DoldKan.Γ₀.map_app, CategoryTheory.Bicategory.whisker_assoc_symm, ComplexShape.Embedding.homEquiv_apply_coe, CategoryTheory.extendCofan_ι_app, CategoryTheory.LocallySmall.hom_small, Homotopy.dNext_succ_chainComplex, CategoryTheory.Lax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, HomologicalComplex.homotopyCofiber.shape, CategoryTheory.CommSq.right_adjoint, CategoryTheory.Bicategory.Prod.sectL_mapComp_inv, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Functor.sectionsEquivHom_naturality_symm, CategoryTheory.ComposableArrows.Exact.cokerIsoKer'_inv_hom_id_assoc, CategoryTheory.Functor.IsEventuallyConstantFrom.coconeιApp_eq, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two_assoc, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, groupHomology.d₂₁_comp_d₁₀, HomotopicalAlgebra.FibrantObject.homRel_equivalence_of_isCofibrant_src, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.δ_toBiprod, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φH, CategoryTheory.Equivalence.congrLeftFunctor_map, CategoryTheory.Bicategory.id_whiskerLeft_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wπ, HomologicalComplex.cylinder.πCompι₀Homotopy.inrX_nullHomotopy_f, CategoryTheory.CatEnriched.hComp_assoc_heq, CategoryTheory.Bicategory.LeftLift.IsKan.fac, CategoryTheory.Adjunction.homAddEquiv_symm_neg, CategoryTheory.Abelian.Ext.mk₀_zero, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.Bicategory.Pith.id_of, CategoryTheory.MonoidalCategory.prodMonoidal_whiskerLeft, SheafOfModules.Presentation.mapRelations_mapGenerators, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_inv, ModuleCat.hom_add, Bicategory.Opposite.op2_id, CommRingCat.HomTopology.continuous_apply, CategoryTheory.IsPushout.inr_fst', CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero_assoc, CategoryTheory.GrpObj.comp_zpow_assoc, CategoryTheory.Bicategory.toNatTrans_mateEquiv, CategoryTheory.Limits.KernelFork.app_one, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom, CategoryTheory.Iso.unop2_op_hom, CategoryTheory.OplaxFunctor.map₂_rightUnitor, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, CategoryTheory.uliftYoneda_map_app, CategoryTheory.Functor.prod'_η_snd, CategoryTheory.ShortComplex.RightHomologyData.ι_g'_assoc, CategoryTheory.Localization.SmallHom.equiv_chgUniv, CategoryTheory.Functor.whiskerRight_zero, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_assoc, CategoryTheory.Functor.uliftYonedaReprXIso_hom_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, CategoryTheory.Limits.kernel.ι_zero_isIso, CategoryTheory.equivYoneda_hom_app, CochainComplex.HomComplex.δ_zero_cochain_v, CochainComplex.HomComplex.Cochain.units_smul_v, CategoryTheory.NonPreadditiveAbelian.neg_add_cancel, CategoryTheory.GrpObj.inv_eq_inv, HomologicalComplex.smul_f_apply, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_left, CategoryTheory.Cat.associator_inv_toNatTrans, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.Limits.FintypeCat.instPreservesFiniteColimitsFintypeCatForgetHomCarrier, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Iso.homToEquiv_apply, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φK, Compactum.continuous_of_hom, CategoryTheory.Functor.curryingEquiv_apply_map, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂, CategoryTheory.ShortComplex.HomologyMapData.add_right, CompHausLike.pullback.cone_π, CategoryTheory.NatTrans.app_sum, Mathlib.Tactic.Bicategory.naturality_id, CategoryTheory.Cat.leftUnitor_inv_toNatTrans, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.Functor.initial_iff_of_isCofiltered, CategoryTheory.Join.mapPairId_inv_app, CategoryTheory.Pseudofunctor.map₂_left_unitor_app, CategoryTheory.Pseudofunctor.mapId'_eq_mapId, CategoryTheory.Limits.biproduct.total, CategoryTheory.Functor.CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, CategoryTheory.Bicategory.associator_inv_naturality_right_assoc, CategoryTheory.Preadditive.coforkOfCokernelCofork_π, CategoryTheory.ShortComplex.SnakeInput.L₀X₂ToP_comp_φ₁_assoc, CategoryTheory.FunctorToTypes.functorHomEquiv_apply_app, CategoryTheory.GrpObj.zpow_comp, CategoryTheory.Limits.biprod.inrCokernelCofork_π, CategoryTheory.Limits.IsTerminal.subsingleton_to, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.ShortComplex.rightHomologyMap_sub, CategoryTheory.StrictPseudofunctor.toFunctor_map, CategoryTheory.Bicategory.Prod.snd_mapId_hom, CategoryTheory.Bicategory.hom_inv_whiskerRight_assoc, CategoryTheory.MonObj.pow_comp_assoc, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app_assoc, CategoryTheory.Bicategory.triangle, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_hom_as_app, CategoryTheory.sum.inrCompAssociator_hom_app_down_down, CategoryTheory.Limits.Pi.ι_π_assoc, CategoryTheory.Comma.fromProd_map_right, CategoryTheory.Bimon.trivialTo_hom, CategoryTheory.Localization.Preadditive.add_eq, CategoryTheory.Limits.isoZeroOfMonoZero_inv, CategoryTheory.ShortComplex.ShortExact.δ_comp_assoc, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right_symm, CategoryTheory.Functor.map_units_smul, CategoryTheory.MonoidalOpposite.tensorRightIso_hom_app_unmop, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_symm_apply_f, CategoryTheory.CatEnrichedOrdinary.Hom.comp_eq, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_hom, CategoryTheory.Limits.WidePushoutShape.mkCocone_ι_app, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_assoc, HomologicalComplex.zero_f_apply, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_apply, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Bicategory.Prod.sectR_map₂, CategoryTheory.Limits.reflexivePair.diagramIsoReflexivePair_inv_app, CategoryTheory.PreGaloisCategory.fiber_in_connected_component, CategoryTheory.instSmallHomDerivedCategoryObjSingleFunctorOfHasExt, CategoryTheory.congrArg_mpr_hom_left, CategoryTheory.Preadditive.hasCokernel_of_hasCoequalizer, CategoryTheory.Limits.biprod.add_eq_lift_desc_id, CategoryTheory.FreeMonoidalCategory.instSubsingletonHomCompDiscreteNormalMonoidalObject, CategoryTheory.ShortComplex.Splitting.g_s_assoc, CategoryTheory.WithInitial.map_map, SSet.stdSimplex.objEquiv_symm_comp, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, CategoryTheory.StrictPseudofunctorPreCore.map₂_whisker_right, CategoryTheory.ProjectiveResolution.extMk_zero, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_inv, CategoryTheory.PrelaxFunctor.id_toPrelaxFunctorStruct, CategoryTheory.ShortComplex.Homotopy.equivSubZero_apply, Action.add_hom, CategoryTheory.FreeBicategory.normalize_naturality, CategoryTheory.Bicategory.Adj.rIso_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom, CategoryTheory.StrictPseudofunctor.id_map₂, CategoryTheory.Sheaf.ΓObjEquivHom_naturality, CategoryTheory.Limits.sigmaSigmaIso_inv, SimplexCategory.δ_injective, CategoryTheory.HomOrthogonal.matrixDecomposition_apply, CategoryTheory.Bicategory.Prod.sectL_map, CategoryTheory.NatTrans.appHom_apply, HomologicalComplex.toCycles_eq_zero, CategoryTheory.End.smul_right, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left_symm, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, CategoryTheory.LocallyDiscrete.mkPseudofunctor_mapComp, CategoryTheory.Functor.IsRepresentedBy.uliftYonedaIso_hom, CategoryTheory.Bicategory.conjugateIsoEquiv_apply_hom, CategoryTheory.NonPreadditiveAbelian.neg_add, CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f, CategoryTheory.Bicategory.id_whiskerRight, SheafOfModules.pushforwardCongr_symm, CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_hom, CochainComplex.mappingCone.inr_f_fst_v_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom, CategoryTheory.Iso.op2_unop_inv_unop2, CategoryTheory.Limits.biproduct.matrix_desc, CategoryTheory.IsPullback.of_hasBinaryBiproduct, CategoryTheory.MonObj.ofRepresentableBy_mul, Homotopy.add_hom, CategoryTheory.Limits.Cofork.IsColimit.homIso_natural, CategoryTheory.Bicategory.Pith.hom₂_ext_iff, CategoryTheory.Localization.homEquiv_refl, groupHomology.congr, CategoryTheory.IsPushout.inl_snd, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, homOfEq_heq_right_iff, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CochainComplex.mappingCone.inl_v_d_assoc, CategoryTheory.Localization.homEquiv_trans, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, CategoryTheory.Limits.equalizer.existsUnique, Hom.unop_inj, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv', CategoryTheory.IsPullback.of_is_bilimit', ChainComplex.mk'_d, CategoryTheory.Limits.limitCompYonedaIsoCocone_inv, HomologicalComplex.singleMapHomologicalComplex_inv_app_ne, CategoryTheory.MonoidalOpposite.tensorRightIso_inv_app_unmop, CategoryTheory.Limits.asEmptyCone_π_app, CategoryTheory.Quotient.inv_mk, CategoryTheory.Comma.fromProd_map_left, CategoryTheory.SimplicialObject.cechNerveEquiv_symm_apply, SheafOfModules.add_val, CategoryTheory.ShortComplex.HasLeftHomology.of_hasKernel, AlgebraicGeometry.Scheme.Modules.Hom.sub_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Functor.prod_δ_snd, CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv_symm, CategoryTheory.conjugateEquiv_comp_assoc, HomologicalComplex.dgoToHomologicalComplex_map_f, CategoryTheory.Limits.BinaryBicone.inrCokernelCofork_π, CategoryTheory.Bicategory.Adj.rightUnitor_inv_τr, CategoryTheory.Oplax.OplaxTrans.naturality_id, CategoryTheory.coyonedaEquiv_coyoneda_map, CategoryTheory.Limits.pullbackZeroZeroIso_hom_fst, CategoryTheory.Bicategory.rightUnitor_comp, CategoryTheory.Bicategory.whiskerRight_id_symm, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_apply, CategoryTheory.Cat.Hom.instIsIsoFunctorαCategoryToNatTransInvHom, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_inverse_obj_π_app, CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_hom_inv, CategoryTheory.Limits.Trident.ofι_π_app, CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_obj, CategoryTheory.Limits.coneOfSectionCompYoneda_π, CategoryTheory.ShortComplex.sub_τ₂, CategoryTheory.OplaxFunctor.mapComp_id_right, CategoryTheory.op_add, CategoryTheory.Bicategory.triangle_assoc_comp_right, CategoryTheory.ShortComplex.Homotopy.trans_h₃, CategoryTheory.MonoidalCategory.tensor_map, CategoryTheory.Pseudofunctor.toDescentData_obj, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, CategoryTheory.Presheaf.IsSheaf.existsUnique_amalgamation_ofArrows, CategoryTheory.Bicategory.comp_whiskerLeft_assoc, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_hom, CategoryTheory.ShortComplex.rightHomologyMap'_sub, CategoryTheory.Pseudofunctor.mapComp_id_right_inv, CategoryTheory.ShortComplex.Homotopy.neg_h₃, CategoryTheory.StrictlyUnitaryPseudofunctor.id_map₂, CategoryTheory.Bicategory.whiskerLeft_inv_hom_assoc, CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.f, CategoryTheory.Comma.unopFunctor_map, AlgebraicTopology.DoldKan.Q_succ, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Bicategory.associatorNatIsoMiddle_hom_app, CategoryTheory.ShortComplex.homologyMap_sub, Prefunctor.costar_fst, HomologicalComplex.cyclesMap_zero, CondensedSet.isDiscrete_tfae, CategoryTheory.linearCoyoneda_obj_map, Rep.standardComplex.d_comp_ε, CategoryTheory.Bicategory.instHasInitialLeftExtensionOfHasLeftKanExtension, ChainComplex.fromSingle₀Equiv_symm_apply_f_zero, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc, CategoryTheory.OverPresheafAux.MakesOverArrow.app, CategoryTheory.Pseudofunctor.map₂_whisker_right_app_assoc, FDRep.simple_iff_end_is_rank_one, CategoryTheory.Limits.unop_zero, CategoryTheory.Grp.Hom.hom_mul, TopologicalSpace.Opens.leSupr_apply_mk, CategoryTheory.Bicategory.mateEquiv_square, PresheafOfModules.comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom, CategoryTheory.Pretriangulated.binaryBiproductTriangle_mor₃, CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_inv, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, CategoryTheory.extendFan_π_app, HomologicalComplex.homologyMap_zero, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality_assoc, CategoryTheory.ShortComplex.Homotopy.trans_h₀, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Lax.LaxTrans.naturality_naturality_assoc, CategoryTheory.ShortComplex.opcyclesMap_zero, CategoryTheory.Bicategory.Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Bicategory.rightUnitor_naturality, CategoryTheory.MonoidalCategory.leftAssocTensor_map, CategoryTheory.CountableCategory.instCountableHomHomAsType, CategoryTheory.PreGaloisCategory.exists_hom_from_galois_of_fiber, CategoryTheory.OverPresheafAux.OverArrows.app_val, CategoryTheory.StrictlyUnitaryPseudofunctor.id_map, CategoryTheory.Subobject.bot_arrow, CategoryTheory.Mon.Hom.hom_pow, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.ShortComplex.neg_τ₂, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_δ_unmop_app, CategoryTheory.Bicategory.whiskerLeft_comp_assoc, AlgebraicGeometry.PresheafedSpace.GlueData.opensImagePreimageMap_app_assoc, CategoryTheory.yonedaCommGrpGrpObj_obj_coe, CategoryTheory.kernelCokernelCompSequence.δ_fac, CategoryTheory.Subfunctor.range_eq_ofSection, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, CategoryTheory.evaluationUncurried_map, CategoryTheory.Limits.IsZero.iff_isSplitEpi_eq_zero, CategoryTheory.Bicategory.Pith.whiskerLeft_iso_inv, CategoryTheory.Discrete.productEquiv_counitIso_inv_app, CategoryTheory.FinallySmall.exists_small_weakly_terminal_set, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, CategoryTheory.Bicategory.rightZigzagIso_symm, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, HomologicalComplex.toCycles_comp_homologyπ, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_hom, CochainComplex.ConnectData.d_comp_d_assoc, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_snd, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_unit_f_aux, CategoryTheory.MonObj.comp_mul, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_assoc, CategoryTheory.Pi.sum_obj_map, CategoryTheory.Lax.StrongTrans.naturality_comp, CategoryTheory.Bicategory.whiskerLeftIso_hom, CategoryTheory.yonedaPairing_map, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, CochainComplex.HomComplex.Cochain.smul_v, Mathlib.Tactic.Bicategory.structuralIso_inv, CategoryTheory.Functor.toOplaxFunctor_map, HomologicalComplex₂.D₂_D₂_assoc, FintypeCat.hom_apply, CategoryTheory.Pretriangulated.Triangle.isZero₂_iff, HomologicalComplex.homotopyCofiber.d_sndX, CategoryTheory.Pseudofunctor.map₂_whisker_right, CategoryTheory.Limits.cokernelIsoOfEq_trans, CategoryTheory.Bicategory.whiskerRight_id_assoc, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_π, CategoryTheory.Mon_Class.pow_comp, CategoryTheory.Bicategory.Prod.sectR_obj, HomologicalComplex.extendMap_add, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, CategoryTheory.IsPullback.inl_snd', CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₂_assoc, CategoryTheory.Bicategory.whisker_assoc_symm_assoc, HomologicalComplex.xPrevIsoSelf_comp_dTo_assoc, CategoryTheory.Preadditive.sum_comp_assoc, CategoryTheory.HomOrthogonal.matrixDecompositionAddEquiv_symm_apply, CategoryTheory.MorphismProperty.pullback_map, CategoryTheory.conjugateEquiv_associator_hom, SimplicialObject.Splitting.decomposition_id, CategoryTheory.PreGaloisCategory.surjective_on_fiber_of_epi, CategoryTheory.GrpObj.inv_comp, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, AlgebraicGeometry.PresheafedSpace.GlueData.snd_invApp_t_app, CategoryTheory.Bicategory.conjugateEquiv_apply', CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, CategoryTheory.sum.inrCompInlCompAssociator_hom_app_down_down, HomologicalComplex.mapBifunctor₁₂.d₃_eq_zero, CategoryTheory.Functor.RepresentableBy.ext_iff, CategoryTheory.Bicategory.mateEquiv_conjugateEquiv_vcomp, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φQ, CochainComplex.toSingle₀Equiv_symm_apply_f_succ, CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_hom_τr, CategoryTheory.Limits.zero_of_source_iso_zero', CategoryTheory.ShortComplex.homologyMap'_smul, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, CategoryTheory.MonObj.comp_one_assoc, Rep.coindResAdjunction_homEquiv_symm_apply, CategoryTheory.Limits.IsZero.eq_zero_of_tgt, CategoryTheory.Pretriangulated.Triangle.neg_hom₂, CategoryTheory.Adjunction.homAddEquiv_zero, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, AlgebraicGeometry.ΓSpec.locallyRingedSpaceAdjunction_homEquiv_apply, CategoryTheory.Iso.op2_unop_hom_unop2, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.FreeBicategory.mk_associator_hom, CategoryTheory.op_sum, AddCommGrpCat.biprodIsoProd_inv_comp_desc, TopModuleCat.hom_sub, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_iff_epi₂, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_hom, CategoryTheory.MonoidalOpposite.unmopEquiv_unitIso_hom_app_unmop, CategoryTheory.LaxFunctor.map₂_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_inv, CategoryTheory.GrothendieckTopology.yonedaEquiv_naturality, CategoryTheory.Biprod.ofComponents_fst, CategoryTheory.Biprod.unipotentUpper_inv, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, CategoryTheory.Functor.prod_η_fst, CategoryTheory.IsPullback.of_has_biproduct, SheafOfModules.unitHomEquiv_comp_apply, CategoryTheory.CategoryOfElements.toCostructuredArrow_obj, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_f, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, CategoryTheory.Presheaf.uliftYonedaAdjunction_unit_app_app, CategoryTheory.ShiftedHom.opEquiv'_symm_add, AlgebraicGeometry.ΓSpecIso_inv_ΓSpec_adjunction_homEquiv, CategoryTheory.NonPreadditiveAbelian.add_neg, CategoryTheory.Mon_Class.comp_one, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id, CategoryTheory.Cat.rightUnitor_inv_app, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero, CategoryTheory.Limits.MultispanIndex.multicoforkEquivSigmaCofork_inverse_obj_ι_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, AlgebraicGeometry.StructureSheaf.res_apply, Rep.coindVEquiv_apply_hom, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, CategoryTheory.Functor.uncurry_obj_map, AlgebraicGeometry.Scheme.LocalRepresentability.instIsLocallyInjectiveHomYonedaGluedToSheaf, CategoryTheory.Bicategory.Prod.snd_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app_assoc, AlgebraicGeometry.Scheme.Modules.Hom.add_app, SSet.stdSimplex.yonedaEquiv_map, CategoryTheory.Groupoid.isIsomorphic_iff_nonempty_hom, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, CategoryTheory.CatEnrichedOrdinary.homEquiv_comp, SemiNormedGrp.completion.map_zero, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_as_app, empty_arrow, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_comp_hom, CategoryTheory.Limits.PreservesKernel.of_iso_comparison, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, AlgebraicTopology.DoldKan.P_add_Q, CategoryTheory.ShortComplex.pOpcycles_π_isoOpcyclesOfIsColimit_inv, CategoryTheory.Cat.Hom.toNatTrans_id, AlgebraicTopology.DoldKan.hσ'_eq, HomologicalComplex₂.d₂_eq, CategoryTheory.CommSq.left_adjoint, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_as_app, CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv', CategoryTheory.Lax.StrongTrans.naturality_naturality, CategoryTheory.Limits.limitCompCoyonedaIsoCone_inv, CategoryTheory.Monad.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι_assoc, HomologicalComplex.extend_d_from_eq_zero, HomotopicalAlgebra.RightHomotopyRel.equivalence, CategoryTheory.Bicategory.precomposing_obj, CategoryTheory.NonPreadditiveAbelian.lift_map_assoc, CategoryTheory.Cat.rightUnitor_inv_toNatTrans, CategoryTheory.ShiftedHom.opEquiv'_zero_add_symm, CategoryTheory.Subobject.bot_eq_zero, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_hom_assoc, Homotopy.extend.hom_eq_zero₂, CategoryTheory.Functor.toPseudoFunctor_mapId, CategoryTheory.Oplax.OplaxTrans.naturality_naturality, CategoryTheory.Bicategory.conjugateEquiv_of_iso, CategoryTheory.ShortComplex.zero, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionRight_op, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc, CategoryTheory.Presheaf.imageSieve_whisker_forget, CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq, CategoryTheory.Subgroupoid.IsNormal.conjugation_bij, TopModuleCat.hom_nsmul, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, CategoryTheory.ShortComplex.LeftHomologyData.liftK_π_eq_zero_of_boundary, Mathlib.Tactic.Elementwise.forget_hom_Type, CategoryTheory.bicategoricalComp_refl, CategoryTheory.Limits.Cofork.IsColimit.existsUnique, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_apply, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.WithInitial.map₂_app, CategoryTheory.Iso.eHomCongr_comp, CategoryTheory.Bicategory.LeftLift.ofIdComp_hom, CategoryTheory.ShortComplex.Homotopy.neg_h₀, CategoryTheory.Functor.IsRepresentedBy.map_bijective, CategoryTheory.Bicategory.rightZigzagIso_inv, CategoryTheory.Bicategory.prod_comp_fst, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Pseudofunctor.StrongTrans.associator_hom_as_app, HomologicalComplex.toCycles_comp_homologyπ_assoc, CategoryTheory.Limits.image.preComp_comp, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, CategoryTheory.Pseudofunctor.map₂_right_unitor, CategoryTheory.ShortComplex.exact_and_mono_f_iff_f_is_kernel, CategoryTheory.Functor.representableByUliftFunctorEquiv_apply_homEquiv, CategoryTheory.Lax.LaxTrans.StrongCore.naturality_hom, CategoryTheory.ShiftedHom.homEquiv_apply, HomologicalComplex₂.D₂_D₁, CategoryTheory.tensorUnit_def, CategoryTheory.Bicategory.Pith.associator_inv_iso_inv, CategoryTheory.Bicategory.rightUnitor_comp_inv, LightCondensed.ihomPoints_symm_apply, CategoryTheory.Pretriangulated.Triangle.add_hom₂, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionHom_op, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, CategoryTheory.Limits.CokernelCofork.condition_assoc, CategoryTheory.Localization.hasSmallLocalizedHom_iff, CategoryTheory.Subgroupoid.coe_inv_coe', CategoryTheory.Bicategory.whiskerLeft_hom_inv_assoc, AlgebraicTopology.DoldKan.hσ'_eq_zero, CategoryTheory.ShortComplex.add_τ₂, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, CategoryTheory.NormalMono.w, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.initiallySmall_iff_exists_small_weakly_initial_set, CategoryTheory.uliftCoyonedaEquiv_naturality, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc, HomologicalComplex₂.shape_f, Mathlib.Tactic.Bicategory.evalWhiskerRight_nil, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, CategoryTheory.Limits.IsLimit.homEquiv_symm_π_app_assoc, CategoryTheory.Pretriangulated.Triangle.zero_hom₃, SemiNormedGrp₁.zero_apply, CategoryTheory.Pretriangulated.Triangle.add_hom₃, CategoryTheory.Pseudofunctor.mapComp'_eq_mapComp, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.CatCenter.app_neg_one_zpow, CategoryTheory.MonoidalPreadditive.zero_tensor, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_map, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.MonoidalOpposite.mopMopEquivalence_unitIso_inv_app_unmop_unmop, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, SSet.stdSimplex.objEquiv_toOrderHom_apply, CategoryTheory.Localization.SmallHom.equiv_comp, CategoryTheory.Bicategory.HasLeftKanExtension.hasInitial, CategoryTheory.Limits.fst_of_isColimit, CategoryTheory.IsGrothendieckAbelian.instInjectiveZMonomorphismsRlpMonoMapFactorizationDataRlpOfNatHom, CategoryTheory.ShortComplex.rightHomologyMap_add, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left, CategoryTheory.NonPreadditiveAbelian.add_comp, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, CategoryTheory.Limits.coprod.inr_fst_assoc, CategoryTheory.PrelaxFunctor.map₂_comp, CategoryTheory.Presieve.uncurry_ofArrows, CategoryTheory.Functor.homEquivOfIsRightKanExtension_symm_apply, Bicategory.Opposite.unop2_comp, CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.Limits.inr_pushoutZeroZeroIso_inv, CategoryTheory.NatTrans.toCatHom₂_comp, CategoryTheory.Limits.Bicone.ι_π, CategoryTheory.ComposableArrows.isoMk₀_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_map₂, CategoryTheory.GrpObj.div_comp, CategoryTheory.Limits.limit.homIso_hom, CategoryTheory.Functor.prod'_ε_snd, CategoryTheory.Limits.biprod.inr_fst_assoc, CategoryTheory.sum.inrCompAssociator_inv_app_down_down, CategoryTheory.Limits.colimit.existsUnique, CategoryTheory.PrelaxFunctor.mapFunctor_obj, CategoryTheory.Adjunction.equivHomsetRightOfNatIso_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.uliftYonedaIsoYoneda_hom_app_app, CategoryTheory.ShortComplex.rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_symm_apply, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_iso_hom, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_hom_as_app, CategoryTheory.Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, CategoryTheory.Pseudofunctor.map₂_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CochainComplex.mappingCone.decomp_to, CategoryTheory.Bicategory.lanUnit_desc, SemiNormedGrp.explicitCokernelDesc_zero, CategoryTheory.eqToHom_down, CategoryTheory.equivYoneda_inv_app, CategoryTheory.CommSq.shortComplex'_g, CategoryTheory.uliftCoyonedaEquiv_symm_map_assoc, Rep.leftRegularHomEquiv_symm_single, CategoryTheory.PreGaloisCategory.comp_autMap_apply, AlgebraicGeometry.Spec.homEquiv_apply, CategoryTheory.Subgroupoid.IsNormal.vertexSubgroup, CategoryTheory.StrictPseudofunctor.comp_mapComp_inv, CategoryTheory.Bicategory.whiskerLeft_id, inhomogeneousCochains.d_eq, CategoryTheory.Adjunction.homAddEquiv_symm_apply, CategoryTheory.Functor.Faithful.map_injective, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, HomologicalComplex.extend.comp_d_eq_zero_iff, CategoryTheory.NatTrans.appLinearMap_apply, CategoryTheory.MonoidalClosed.curry_injective, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.Localization.Construction.liftToPathCategory_map, CategoryTheory.Limits.Trident.IsLimit.homIso_symm_apply, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.ActionCategory.comp_val, CategoryTheory.Abelian.Pseudoelement.zero_eq_zero, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, Mathlib.Tactic.Bicategory.eval_of, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.shift_zero_eq_zero, CategoryTheory.Functor.Final.zigzag_of_eqvGen_colimitTypeRel, CategoryTheory.Limits.BinaryBicone.inlCokernelCofork_π, CategoryTheory.Pseudofunctor.mapComp'_naturality_2, CategoryTheory.Groupoid.invEquiv_symm_apply, CategoryTheory.IsPullback.zero_bot, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, CategoryTheory.ObjectProperty.rightOrthogonal.map_bijective_of_isTriangulated, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_base, CategoryTheory.Functor.CorepresentableBy.homEquiv_comp, CategoryTheory.CatEnrichedOrdinary.hComp_id_heq, HomologicalComplex₂.D₁_D₂_assoc, CategoryTheory.Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, CategoryTheory.Adjunction.homAddEquiv_symm_add, Homotopy.trans_hom, CategoryTheory.Lax.StrongTrans.id_naturality_inv, CategoryTheory.LocalizerMorphism.equiv_smallHomMap, CategoryTheory.Monad.beckAlgebraCofork_ι_app, CategoryTheory.Idempotents.Karoubi.complement_p, CategoryTheory.Sheaf.instIsLocallySurjectiveHomMapTypeSheafComposeForget, CategoryTheory.ite_comp, SemiNormedGrp.comp_explicitCokernelπ, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app_assoc, CategoryTheory.conjugateEquiv_symm_comm, CategoryTheory.Oplax.OplaxTrans.naturality_naturality_assoc, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_δ_unmop_unmop, CategoryTheory.Limits.Sigma.ι_π_of_ne_assoc, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionRight_unop, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom, CategoryTheory.Limits.MultispanIndex.parallelPairDiagramOfIsColimit_map, CategoryTheory.Bicategory.InducedBicategory.forget_obj, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CochainComplex.mappingCone.lift_desc_f, SingleObj.toHom_symm_apply, CategoryTheory.Bicategory.Adj.Bicategory.associator_inv_τl, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.Limits.CokernelCofork.map_condition, CategoryTheory.MonoidalOpposite.tensorRightMopIso_inv_app_unmop, CategoryTheory.Limits.biproduct.lift_matrix, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, CategoryTheory.MonoidalCategory.dite_tensor, CategoryTheory.MonObj.pow_comp, CategoryTheory.StrictPseudofunctor.id_map, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.CountableCategory.instCountableHomObjAsType, CategoryTheory.ShortComplex.HomologyMapData.neg_right, CategoryTheory.Pseudofunctor.map₂_associator, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, CategoryTheory.ShortComplex.homologyι_comp_fromOpcycles, CategoryTheory.Bicategory.conjugateEquiv_associator_hom, CategoryTheory.Bicategory.Prod.swap_obj, CategoryTheory.epi_from_simple_zero_of_not_iso, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.Free.lift_map_single, CategoryTheory.Idempotents.Karoubi.zsmul_hom, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, CategoryTheory.Abelian.coimage.comp_π_eq_zero, CategoryTheory.Join.opEquiv_inverse_map_edge_op, CategoryTheory.ObjectProperty.homMk_surjective, CategoryTheory.PrelaxFunctor.map₂_hom_inv_isIso, CategoryTheory.Functor.curryingFlipEquiv_apply_map, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, CategoryTheory.Limits.zero_of_target_iso_zero, CategoryTheory.ShortComplex.Homotopy.add_h₂, CategoryTheory.yonedaGrpObj_obj_coe, CategoryTheory.conjugateEquiv_id, CategoryTheory.Functor.mapAddHom_apply, CategoryTheory.Abelian.Ext.smul_eq_comp_mk₀, CategoryTheory.ShortComplex.Splitting.r_f, CategoryTheory.Bicategory.Pith.inclusion_mapId, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, CochainComplex.ConnectData.shape, CategoryTheory.Triangulated.TStructure.zero', CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, AlgebraicGeometry.tilde.map_add, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, Action.FintypeCat.quotientToQuotientOfLE_hom_mk, CategoryTheory.IsPullback.zero_right, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.mappingCone.desc_f, CochainComplex.mappingCone.d_fst_v'_assoc, CategoryTheory.StrictPseudofunctor.id_mapId_hom, Bicategory.Opposite.op2_leftUnitor_inv, CategoryTheory.Bicategory.InducedBicategory.Hom.category_comp_hom, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, CategoryTheory.Bicategory.Prod.fst_map, SSet.stdSimplex.ofSimplex_yonedaEquiv_δ, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, CategoryTheory.Bicategory.Adj.Hom₂.conjugateEquiv_τl, AlgebraicTopology.DoldKan.σ_comp_PInfty, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_iso_inv, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_inv, CategoryTheory.WithTerminal.liftFromOver_obj_map, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CategoryTheory.Bicategory.eqToHom_whiskerRight, CategoryTheory.Bicategory.Adj.associator_inv_τl, CategoryTheory.Bicategory.prod_comp_snd, CategoryTheory.Preadditive.comp_add, LightCondensed.ihom_map_val_app, CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_app_assoc, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.Abelian.Ext.addEquiv₀_symm_apply, CategoryTheory.ShortComplex.Homotopy.eq_add_nullHomotopic, CategoryTheory.Limits.kernelZeroIsoSource_hom, CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage, CategoryTheory.Presheaf.isLocallySurjective_toPlus, dNext_eq_dFrom_fromNext, CategoryTheory.Preadditive.sum_comp'_assoc, CochainComplex.mappingCone.inl_v_d, CategoryTheory.Linear.homCongr_symm_apply, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp', CategoryTheory.Pretriangulated.contractibleTriangle_mor₃, CategoryTheory.ShortComplex.Homotopy.comp_h₀, CategoryTheory.Adjunction.homAddEquiv_neg, MonObj.mopEquiv_functor_obj_mon_mul_unmop, CategoryTheory.Bicategory.Pith.comp₂_iso_hom, CategoryTheory.Limits.biproduct.desc_eq, CategoryTheory.Bicategory.lanLiftUnit_desc, CategoryTheory.Bicategory.leftUnitor_naturality_assoc, CategoryTheory.Bicategory.conjugateEquiv_id, CategoryTheory.Lax.StrongTrans.id_naturality_hom, CategoryTheory.Functor.IsStronglyCartesian.universal_property, CategoryTheory.Adjunction.homEquiv_symm_id, CategoryTheory.isIso_iff_yoneda_map_bijective, CategoryTheory.TwistShiftData.shiftFunctorAdd'_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_map, CategoryTheory.Bicategory.whisker_assoc, CategoryTheory.wideSubcategoryInclusion.map, CategoryTheory.Lax.OplaxTrans.naturality_id, CategoryTheory.comp_ite, CategoryTheory.ShortComplex.ShortExact.δ_comp, CategoryTheory.Subgroupoid.coe_inv_coe, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₃, CategoryTheory.SemiCartesianMonoidalCategory.default_eq_toUnit, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.ShortComplex.HomologyMapData.smul_right, CategoryTheory.Limits.biprod.lift_desc_assoc, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.ShiftedHom.opEquiv'_symm_comp, CategoryTheory.Preadditive.epi_iff_isZero_cokernel', CategoryTheory.PreOneHypercover.sieve₁_apply, SimplicialObject.Splitting.IndexSet.epiComp_snd_coe, CategoryTheory.Limits.CokernelCofork.map_π, CategoryTheory.Bicategory.Adj.comp_τr, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans_app, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φK, FintypeCat.inv_hom_id_apply, CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso_hom, CategoryTheory.Adjunction.homEquiv_naturality_left_square_iff, CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary_assoc, HomologicalComplex.homologyι_descOpcycles_eq_zero_of_boundary_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, ModuleCat.hom_zsmul, CategoryTheory.Preadditive.inv_def, CategoryTheory.Endofunctor.Coalgebra.ext_iff, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, CategoryTheory.Adjunction.homEquiv_naturality_right_symm, CategoryTheory.Presheaf.instIsLocallySurjectiveHomToRangeSheafify, ChainComplex.linearYonedaObj_d, CategoryTheory.ShortComplex.Homotopy.symm_h₂, Action.zsmul_hom, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.Mon_Class.one_comp, CategoryTheory.Preadditive.neg_comp, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Bicategory.conjugateEquiv_symm_iso, CategoryTheory.Bicategory.InducedBicategory.isoMk_inv_hom, Compactum.str_hom_commute, Homotopy.smul_hom, Homotopy.prevD_zero_cochainComplex, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, CategoryTheory.Bicategory.Prod.sectR_mapComp_hom, CategoryTheory.Limits.MonoFactorisation.kernel_ι_comp, CategoryTheory.HomOrthogonal.eq_zero, CategoryTheory.StrictPseudofunctor.mapComp_eq_eqToIso, CategoryTheory.Pretriangulated.Triangle.add_hom₁, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_map, CategoryTheory.PrelaxFunctor.map₂_comp_assoc, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CategoryTheory.Limits.biproduct.toSubtype_eq_desc, CategoryTheory.LaxFunctor.mapComp_naturality_right, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm, CategoryTheory.Functor.FullyFaithful.homNatIso'_inv_app_down, CategoryTheory.Mat.add_apply, CategoryTheory.Preadditive.mul_def, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.ShortComplex.Homotopy.sub_h₂, CategoryTheory.Abelian.Ext.mk₀_eq_zero_iff, CategoryTheory.congrArg_cast_hom_left, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_as_app, CategoryTheory.StrictPseudofunctorPreCore.map₂_whisker_left, Rep.invariantsAdjunction_homEquiv_apply_hom, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_left_addition, CategoryTheory.Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, CategoryTheory.Bicategory.associatorNatIsoRight_hom_app, CategoryTheory.Limits.Bicone.ofColimitCocone_π, CategoryTheory.Bicategory.Adj.lIso_inv, CategoryTheory.Bicategory.instIsIsoHomRightZigzagHom, CategoryTheory.yonedaEquiv_naturality, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, CategoryTheory.Adjunction.homEquiv_apply, CategoryTheory.Abelian.preadditiveCoyonedaObj_map_surjective, CategoryTheory.MonoidalLinear.smul_whiskerRight, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CategoryTheory.Subgroupoid.inv_mem_iff, CategoryTheory.Mat_.comp_apply, CategoryTheory.WithTerminal.pseudofunctor_mapId, CategoryTheory.kernelCokernelCompSequence.φ_π, CategoryTheory.PreGaloisCategory.evaluation_aut_surjective_of_isGalois, HomologicalComplex₂.ιTotal_totalFlipIso_f_hom, SimplicialObject.Split.natTransCofanInj_app, CategoryTheory.MonoidalLinear.whiskerLeft_smul, CategoryTheory.Bicategory.associator_inv_congr, CategoryTheory.Bicategory.inv_whiskerLeft, CochainComplex.ConnectData.d₀_comp_assoc, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackId_hom, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_app, ModuleCat.Hom.hom₂_apply, ChainComplex.fromSingle₀Equiv_apply, CochainComplex.mappingCone.d_fst_v', CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.ShortComplex.LeftHomologyMapData.neg_φK, TopModuleCat.hom_smul, CategoryTheory.NonPreadditiveAbelian.add_comm, CondensedMod.epi_iff_locallySurjective_on_compHaus, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_map, CategoryTheory.Pseudofunctor.id_mapComp, CategoryTheory.Limits.isoZeroOfEpiZero_inv, CategoryTheory.StrictPseudofunctor.mk'_map₂, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.Functor.toPseudoFunctor'_mapId, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, AlgebraicGeometry.ΓSpec.adjunction_homEquiv_symm_apply, SemiNormedGrp.hom_zero, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_inv, CategoryTheory.Iso.op2_inv_unop2, CategoryTheory.Limits.kernel.condition_assoc, CategoryTheory.GrpObj.comp_inv_assoc, CategoryTheory.PrelaxFunctor.map₂_isIso, CategoryTheory.types_hom, CategoryTheory.IsKernelPair.pullback, CategoryTheory.Bicategory.mateEquiv_leftUnitor_hom_rightUnitor_inv, CategoryTheory.Bicategory.LeftExtension.whisker_unit, CategoryTheory.Bicategory.conjugateEquiv_mateEquiv_vcomp, CategoryTheory.LaxFunctor.map₂_rightUnitor_app, Homotopy.comm, CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_symm_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackComp_inv, CategoryTheory.ActionCategory.id_val, CategoryTheory.ShortComplex.Homotopy.trans_h₁, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_naturality, HomologicalComplex.mapBifunctor.d₁_eq', CategoryTheory.Limits.cokernelBiprodInlIso_hom, CategoryTheory.Iso.homCongr_symm_apply, CategoryTheory.yonedaCommGrpGrp_map_app, CategoryTheory.StrictPseudofunctor.comp_map₂, CategoryTheory.Bicategory.prod_homCategory_id_snd, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_hom_iCycles, CategoryTheory.ShortComplex.Homotopy.comm₂, CategoryTheory.Limits.biproduct.ι_π, HomologicalComplex.d_comp_d, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp_assoc, CategoryTheory.PreZeroHypercover.sumLift_h₀, ChainComplex.mk_congr_succ_d₂, CommRingCat.HomTopology.isHomeomorph_precomp, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, CategoryTheory.Bicategory.Adj.Bicategory.associator_hom_τr, SSet.S.le_iff_nonempty_hom, CategoryTheory.Bicategory.InducedBicategory.forget_map₂, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app_assoc, CategoryTheory.Abelian.image.ι_comp_eq_zero, TopCat.Presheaf.isGluing_iff_pairwise, CategoryTheory.GrpObj.comp_div_assoc, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, Bicategory.Opposite.bicategory_homCategory_id_unop2, CategoryTheory.IsPushout.of_hasBinaryBiproduct, CategoryTheory.Bicategory.associatorNatIsoLeft_hom_app, HomologicalComplex.mapBifunctor.d₂_eq_zero, CategoryTheory.ShortComplex.Splitting.s_r, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_fst, ChainComplex.chainComplex_d_succ_succ_zero, CategoryTheory.MonoidalCategory.rightAssocTensor_map, CategoryTheory.Subgroupoid.mem_full_iff, CategoryTheory.Bicategory.LeftLift.whiskerIdCancel_right, CategoryTheory.TwistShiftData.shiftFunctorAdd'_hom_app, CategoryTheory.PrelaxFunctor.comp_toPrelaxFunctorStruct, CategoryTheory.Sheaf.ΓHomEquiv_naturality_right, CategoryTheory.MonoidalClosed.curryHomEquiv'_symm_apply, CategoryTheory.ShortComplex.sub_τ₃, CategoryTheory.PrelaxFunctor.map₂_inv_hom_assoc, CategoryTheory.Limits.Pi.ι_π_of_ne_assoc, CategoryTheory.PreGaloisCategory.PointedGaloisObject.Hom.comp, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.map_yonedaEquiv, Homotopy.comp_hom, CategoryTheory.Oplax.StrongTrans.isoMk_inv_as_app, CategoryTheory.CatEnrichedOrdinary.hComp_assoc, CategoryTheory.Bicategory.Prod.fst_mapComp_inv, CategoryTheory.ShortComplex.abelianImageToKernel_comp_kernel_ι_comp_cokernel_π, dNext_eq, CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer', CategoryTheory.Oplax.StrongTrans.Modification.naturality, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, CategoryTheory.op_zsmul, CategoryTheory.Sieve.natTransOfLe_app_coe, CategoryTheory.GrothendieckTopology.map_uliftYonedaEquiv, CategoryTheory.eHomEquiv_comp, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, CategoryTheory.sum.inlCompInverseAssociator_inv_app_down_down, CochainComplex.shiftFunctor_obj_d', CategoryTheory.Pretriangulated.Triangle.smul_hom₃, CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois_symm_fiber, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_comp, CategoryTheory.Hom.one_def, CategoryTheory.NonPreadditiveAbelian.neg_sub, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp_assoc, CategoryTheory.Limits.BinaryCofan.IsColimit.desc'_coe, groupCohomology.mapShortComplexH1_zero, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.FunctorToTypes.binaryProductCone_π_app, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.NonPreadditiveAbelian.comp_add, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.conjugateIsoEquiv_apply_hom, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_iff_epi₃, CategoryTheory.Bicategory.Adj.associator_hom_τr, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom, Bicategory.Opposite.unop2_id, AlgebraicTopology.DoldKan.N₂_obj_X_d, CategoryTheory.Limits.WalkingMultispan.instIsEmptyHomRightLeft, CategoryTheory.BicartesianSq.of_is_biproduct₂, ModuleCat.homLinearEquiv_apply, CategoryTheory.Limits.Multifork.ofι_π_app, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.ShortComplex.RightHomologyMapData.add_φH, CochainComplex.HomComplex.Cocycle.equivHom_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, CategoryTheory.Pi.sum_map_app, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app, CategoryTheory.Triangulated.instNonemptyOctahedron, CategoryTheory.Pretriangulated.Triangle.sub_hom₃, AlgebraicGeometry.AffineSpace.homOverEquiv_apply, CategoryTheory.ShortComplex.rightHomologyMap_neg, CategoryTheory.Bicategory.prod_leftUnitor_hom_fst, SimplicialObject.Splitting.cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Limits.pullbackZeroZeroIso_inv_snd, CategoryTheory.Limits.KernelFork.mapIsoOfIsLimit_hom, CategoryTheory.CommSq.instHasLift_1, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app_assoc, CategoryTheory.Limits.biproduct.lift_eq, CategoryTheory.BicartesianSq.of_has_biproduct₁, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, Rep.homEquiv_symm_apply_hom, HomotopicalAlgebra.LeftHomotopyRel.equivalence, CategoryTheory.Grp_Class.inv_eq_inv, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, GrpCat.ofHom_injective, CategoryTheory.conjugateIsoEquiv_apply_inv, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f, HomologicalComplex.mapBifunctor₂₃.d_eq, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τl, CategoryTheory.WithInitial.liftFromUnderComp_hom_app, CategoryTheory.Bicategory.whiskerLeft_rightUnitor_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φQ, CategoryTheory.Limits.kernelZeroIsoSource_inv, CategoryTheory.Bicategory.Adjunction.comp_left_triangle_aux, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, CategoryTheory.Bicategory.whiskerLeft_hom_inv_whiskerRight, CategoryTheory.Limits.BinaryBicone.toBiconeFunctor_obj_ι, CategoryTheory.yonedaEvaluation_map_down, CategoryTheory.CartesianClosed.uncurry_injective, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_fst, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Iso.homToEquiv_symm_apply, CategoryTheory.PreGaloisCategory.surjective_of_nonempty_fiber_of_isConnected, MonObj.mopEquiv_counitIso_inv_app_hom_unmop, CategoryTheory.unitCompPartialBijective_symm_natural, CategoryTheory.NatTrans.app_smul, CategoryTheory.FunctorToTypes.binaryCoproductCocone_ι_app, CategoryTheory.Subgroupoid.mem_iff, CategoryTheory.Functor.sectionsEquivHom_apply_app, CochainComplex.cm5b.I_d, CategoryTheory.Functor.toPseudoFunctor'_mapComp, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, CategoryTheory.ShortComplex.Homotopy.ofEq_h₁, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.IsPullback.of_isBilimit, CategoryTheory.ComposableArrows.Exact.isIso_cokerToKer', CategoryTheory.StrictlyUnitaryPseudofunctor.map_id, CategoryTheory.Iso.homFromEquiv_apply, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, groupHomology.d₁₀_eq_zero_of_isTrivial, CategoryTheory.PreGaloisCategory.mulAction_naturality, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.prodOpEquiv_functor_map, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, CategoryTheory.Limits.HasZeroObject.zeroIsoIsInitial_hom, Bicategory.Opposite.bicategory_homCategory_comp_unop2, CategoryTheory.GrpObj.comp_inv, HomologicalComplex.homotopyCofiber.inlX_d_assoc, CategoryTheory.Limits.kernelBiprodSndIso_inv, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_π_apply, groupCohomology.d₀₁_comp_d₁₂_assoc, CategoryTheory.LocallyDiscrete.mkPseudofunctor_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom, CategoryTheory.Functor.prod'_η_fst, CategoryTheory.Limits.inl_pushoutZeroZeroIso_inv, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_iff_mono₂, CategoryTheory.MonoidalClosed.homEquiv_apply_eq, CategoryTheory.Limits.coneOfSectionCompCoyoneda_π, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_comp, CategoryTheory.conjugateEquiv_whiskerLeft, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, SSet.OneTruncation₂.reflQuiver_Hom, AlgebraicGeometry.tilde.map_zero, CategoryTheory.Iso.homCongr_symm, HomologicalComplex.homotopyCofiber.desc_f, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_comp, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CochainComplex.ConnectData.comp_d₀, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom, CategoryTheory.Presheaf.map_comp_uliftYonedaEquiv_down, CategoryTheory.Free.lift_map, Hom.cast_eq_cast, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly, Opens.mayerVietorisSquare'_toSquare, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_apply, CategoryTheory.WithInitial.liftFromUnder_map_app, HomologicalComplex.ι_mapBifunctorFlipIso_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.Bicategory.id_whiskerLeft, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, CategoryTheory.conjugateIsoEquiv_symm_apply_inv, CategoryTheory.ShortComplex.rightHomologyMap'_neg, CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app, CategoryTheory.Limits.BinaryBicone.ofColimitCocone_snd, CategoryTheory.SimplicialObject.cechNerveEquiv_apply, MonObj.mopMonObj_one_unmop, CategoryTheory.Bicategory.Pith.associator_inv_iso_hom, CategoryTheory.Bicategory.whiskerLeft_hom_inv_whiskerRight_assoc, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, Opens.coe_mayerVietorisSquare_X₄, CategoryTheory.Pseudofunctor.mapComp_id_left_hom, CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf, ContinuousCohomology.MultiInd.d_comp_d, CategoryTheory.MonoidalPreadditive.zero_whiskerRight, CategoryTheory.Bicategory.prod_associator_inv_snd, CategoryTheory.Abelian.FunctorCategory.imageObjIso_hom, CategoryTheory.OplaxFunctor.id_mapId, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Functor.map_neg, CategoryTheory.Idempotents.DoldKan.Γ_map_app, CommGrpCat.one_apply, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.Functor.homMonoidHom_apply, CategoryTheory.Limits.KernelFork.map_condition, CategoryTheory.Abelian.Ext.mk₀_linearEquiv₀_apply, groupHomology.d₃₂_comp_d₂₁, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CategoryTheory.Pseudofunctor.map₂_whisker_left_app, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Adjunction.homEquiv_naturality_left_symm, HomologicalComplex.opcyclesToCycles_homologyπ_assoc, CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_rightUnitor, CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_π_apply, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, Prefunctor.costar_snd, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Limits.PushoutCocone.isoMk_hom_hom, CategoryTheory.Limits.biprod.add_eq_lift_id_desc, CategoryTheory.PreGaloisCategory.IsNaturalSMul.naturality, CategoryTheory.StrictlyUnitaryLaxFunctor.ext_iff, CategoryTheory.Bicategory.Prod.snd_mapComp_hom, CochainComplex.mappingCone.inl_v_descShortComplex_f, CategoryTheory.Groupoid.isoEquivHom_symm_apply_inv, AlgebraicGeometry.SpecToEquivOfLocalRing_symm_apply, CategoryTheory.prodOpEquiv_counitIso_hom_app, CategoryTheory.Bicategory.leftUnitor_hom_congr, CategoryTheory.Subgroupoid.subset_generated, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Limits.Sigma.ι_π_of_ne, AddCommGrpCat.kernelIsoKer_hom_comp_subtype, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Limits.FintypeCat.jointly_surjective, AlgebraicGeometry.Scheme.Hom.stalkMap_congr, CategoryTheory.ActionCategory.homOfPair.val, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_hom, CategoryTheory.ShortComplex.Splitting.r_f_assoc, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, CategoryTheory.Sieve.functor_map_coe, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, HomologicalComplex.mapBifunctor₁₂.d₁_eq_zero, CategoryTheory.Adjunction.rightAdjointLaxMonoidal_ε, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.Presheaf.freeYonedaHomEquiv_comp_assoc, CategoryTheory.Subgroupoid.mem_im_iff, CategoryTheory.coyonedaPairing_map, CategoryTheory.Bicategory.Adj.leftUnitor_inv_τr, CategoryTheory.IsPushout.zero_right, CategoryTheory.Adjunction.homEquiv_counit, CategoryTheory.leftDistributor_inv, CategoryTheory.Bicategory.whiskerRight_isIso, CochainComplex.HomComplex.Cochain.ofHom_add, CategoryTheory.Limits.ker.condition_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.Pretriangulated.Triangle.sub_hom₂, CategoryTheory.Linear.instEpiHSMulHomOfInvertible, SemiNormedGrp.comp_explicitCokernelπ_assoc, CategoryTheory.PrelaxFunctor.map₂_id, CategoryTheory.Bicategory.rightUnitor_inv_naturality_assoc, CategoryTheory.Localization.Preadditive.add'_zero, CategoryTheory.Limits.coprod.inr_fst, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, HomologicalComplex.mapBifunctor.d₂_eq_zero', CategoryTheory.Limits.zero_app, CategoryTheory.Functor.map_injective, CategoryTheory.Limits.isoZeroOfMonoZero_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.Oplax.OplaxTrans.isoMk_inv_as_app, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_map, CategoryTheory.StrictPseudofunctor.mk''_mapComp, CategoryTheory.ShiftedHom.opEquiv'_apply, CochainComplex.toSingle₀Equiv_apply, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁_assoc, CategoryTheory.OplaxFunctor.map₂_leftUnitor_app_assoc, CategoryTheory.Limits.BinaryBicone.fstKernelFork_ι, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, CategoryTheory.Functor.toOplaxFunctor_mapId, CategoryTheory.Prod.fac', Rep.leftRegularHomEquiv_apply, SSet.stdSimplex.mem_nonDegenerate_iff_mono, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero, CategoryTheory.sum.inlCompInlCompAssociator_hom_app_down, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f, CategoryTheory.Grp.Hom.hom_inv, CategoryTheory.IsPushout.hom_eq_add_up_to_refinements, CategoryTheory.BicategoricalCoherence.assoc_iso, groupHomology.chainsMap_zero, CochainComplex.HomComplex.Cochain.single_v_eq_zero', CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Bicategory.Comonad.comul_assoc_assoc, CategoryTheory.tensorLeftHomEquiv_whiskerLeft_comp_evaluation, CategoryTheory.Presheaf.coconeOfRepresentable_ι_app, CategoryTheory.Preadditive.comp_nsmul, HomologicalComplex.homologyι_opcyclesToCycles, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, CategoryTheory.Pretriangulated.Triangle.mor₁_eq_zero_of_epi₃, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Preadditive.forkOfKernelFork_ι, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_assoc, CategoryTheory.Mat_.id_apply, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm_assoc, CategoryTheory.Bicategory.Pith.leftUnitor_hom_iso, CategoryTheory.WithInitial.lift_map, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, CategoryTheory.Bicategory.instHasInitialLeftLiftOfHasLeftKanLift, CochainComplex.HomComplex.Cochain.ofHom_zero, AlgebraicGeometry.Scheme.IsLocallyDirected.exists_of_pullback_V_V, HomologicalComplex.mapBifunctor.d₂_eq', CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, CategoryTheory.conjugateEquiv_adjunction_id_symm, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, GrpCat.one_apply, Mathlib.Tactic.BicategoryCoherence.assoc_liftHom₂, CategoryTheory.hasExt_iff, CategoryTheory.Bicategory.lanUnit_desc_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_naturality, CategoryTheory.Bicategory.associator_naturality_left, CategoryTheory.CategoryOfElements.id_val, TopologicalSpace.Opens.apply_mk, CochainComplex.cochainComplex_d_succ_succ_zero, CategoryTheory.Bicategory.whiskerLeft_whiskerLeft_inv_hom_assoc, TopologicalSpace.Opens.infLELeft_apply, CategoryTheory.ShrinkHoms.comp_def, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.Abelian.tfae_mono, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, prevD_comp_right, CategoryTheory.Bicategory.Pith.rightUnitor_inv_iso_hom, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, CategoryTheory.Bicategory.Pith.comp₂_iso_inv_assoc, CategoryTheory.ShortComplex.Homotopy.g_h₃, CategoryTheory.IsPushout.of_has_biproduct, SSet.yonedaEquiv_comp, CategoryTheory.MonoidalOpposite.tensorLeftIso_hom_app_unmop, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map₂, CategoryTheory.Limits.FintypeCat.instPreservesFiniteLimitsFintypeCatForgetHomCarrier, CategoryTheory.Abelian.Ext.mk₀_bijective, CategoryTheory.Preadditive.isCoseparator_iff, SimplicialObject.Splitting.IndexSet.eqId_iff_eq, CategoryTheory.ObjectProperty.isColocal.homEquiv_apply, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, CategoryTheory.Limits.Types.Pushout.cocone_ι_app, CategoryTheory.Bicategory.prod_homCategory_comp_snd, CategoryTheory.Functor.prod_μ_snd, HomologicalComplex₂.total_d, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, CategoryTheory.Limits.KernelFork.map_ι, CategoryTheory.MarkovCategory.instSubsingletonHomTensorUnit, CategoryTheory.Oplax.StrongTrans.id_naturality_hom, CategoryTheory.Bicategory.leftUnitor_naturality, CategoryTheory.Limits.zero_comp, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, CategoryTheory.Localization.hasSmallLocalizedShiftedHom_iff, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_id_hom, CategoryTheory.CatEnrichedOrdinary.id_hComp_id, CategoryTheory.OverPresheafAux.MakesOverArrow.of_arrow, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_mapId, CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveTypeHom, CategoryTheory.Bicategory.Adj.Bicategory.associator_inv_τr, SSet.OneTruncation₂.nerveHomEquiv_apply, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, FintypeCat.uSwitchEquiv_symm_naturality, CategoryTheory.MonoOver.initialTo_b_eq_zero, CategoryTheory.Pretriangulated.Triangle.isZero₃_iff, CategoryTheory.ShrinkHoms.inverse_map, CategoryTheory.WithTerminal.liftFromOverComp_inv_app, CategoryTheory.Monad.algebraPreadditive_homGroup_neg_f, HomologicalComplex.mapBifunctor.d₁_eq_zero', CategoryTheory.WithInitial.liftToInitial_map, CategoryTheory.ShortComplex.Homotopy.comp_h₂, CategoryTheory.ShortComplex.Homotopy.ofEq_h₃, AlgebraicGeometry.Scheme.Hom.stalkMap_congr_assoc, CategoryTheory.LaxFunctor.mapComp_assoc_left, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τl, CategoryTheory.Limits.reflexivePair.compRightIso_inv_app, CategoryTheory.Bicategory.Comonad.counit_comul, ModuleCat.ofHom₂_hom_apply_hom, CategoryTheory.unop_zsmul, SheafOfModules.conjugateEquiv_pullbackId_hom, CategoryTheory.Sheaf.Hom.add_app, CategoryTheory.PreGaloisCategory.endEquivAutGalois_π, CategoryTheory.ActionCategory.π_map, CategoryTheory.CatEnriched.eqToHom_hComp_eqToHom, CategoryTheory.Prod.swap_map, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapId_inv_iso_hom, CategoryTheory.NatTrans.app_units_zsmul, CategoryTheory.ShortComplex.cyclesMap'_add, CategoryTheory.Presieve.extension_iff_amalgamation, groupCohomology.subtype_comp_d₀₁, CategoryTheory.OplaxFunctor.map₂_rightUnitor_app, CategoryTheory.prod_comp, CategoryTheory.CatEnrichedOrdinary.eqToHom_hComp_eqToHom, CategoryTheory.Subgroupoid.mem_top, CategoryTheory.NonPreadditiveAbelian.diag_σ_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_right_unitor, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.Cat.Hom.toNatTrans_comp, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.MonoidalClosed.curryHomEquiv'_apply, CategoryTheory.LaxFunctor.mapComp_assoc_right, CategoryTheory.Limits.biproduct.ι_toSubtype, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, CochainComplex.mappingCone.inl_v_snd_v, CategoryTheory.Discrete.sumEquiv_functor_map, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_mk, CategoryTheory.Bicategory.mateEquiv_apply, CategoryTheory.whiskerLeft_sum, CategoryTheory.Bicategory.Adj.associator_hom_τl, CategoryTheory.Types.instReflectsColimitsOfSizeForgetTypeHom, CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors_toPrefunctor_map, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapComp, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_hom_hom, CategoryTheory.eHomEquiv_comp_assoc, CategoryTheory.Oplax.StrongTrans.naturality_naturality, CategoryTheory.ShortComplex.RightHomologyData.ι_descQ_eq_zero_of_boundary, CategoryTheory.ShortComplex.neg_τ₁, CategoryTheory.MonoidalOpposite.tensorRightMopIso_hom_app_unmop, CategoryTheory.Under.opEquivOpOver_counitIso, HomologicalComplex.unit_tensor_d₁, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.Bicategory.pentagon_hom_hom_inv_inv_hom, CategoryTheory.Limits.IsZero.eq_zero_of_src, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_rightAdd, CategoryTheory.PrelaxFunctor.map₂Iso_hom, ModuleCat.hom_sub, CategoryTheory.Bicategory.Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.add_φK, CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition'_assoc, CategoryTheory.NonPreadditiveAbelian.sub_def, CategoryTheory.DifferentialObject.d_squared_assoc, CategoryTheory.conjugateEquiv_adjunction_id, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHom_op, CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_as_app, CategoryTheory.Limits.biproduct.ι_toSubtype_assoc, CategoryTheory.Functor.final_iff_of_isFiltered, CategoryTheory.coyonedaEquiv_symm_map, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom_assoc, CategoryTheory.Adjunction.homEquiv_naturality_right_square, CategoryTheory.Abelian.FunctorCategory.functor_category_isIso_coimageImageComparison, CategoryTheory.rightDistributor_hom, ModuleCat.ofHom₂_compr₂, CategoryTheory.PrelaxFunctor.map₂Iso_inv, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_map, starEquivCostar_symm_apply_snd, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, CategoryTheory.Bicategory.Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Limits.HasZeroObject.zeroIsoIsTerminal_inv, CategoryTheory.ShortComplex.Homotopy.neg_h₂, CategoryTheory.Limits.SequentialProduct.cone_π_app, PresheafOfModules.freeYonedaEquiv_comp, AlgebraicGeometry.ΓSpec_adjunction_homEquiv_eq, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_assoc, CochainComplex.ConnectData.comp_d₀_assoc, CategoryTheory.MonoidalPreadditive.tensor_add, Bicategory.Opposite.bicategory_associator_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_assoc, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.finrank_endomorphism_simple_eq_one, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, CategoryTheory.ShortComplex.HasRightHomology.of_zeros, CategoryTheory.Limits.IsZero.iff_id_eq_zero, AlgebraicGeometry.Scheme.Modules.pushforwardCongr_inv_app_app, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, HomologicalComplex₂.d₂_eq', CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.ShortComplex.zero_τ₁, CategoryTheory.IsFiltered.sup_objs_exists, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_p, CategoryTheory.Bicategory.pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.ShortComplex.smul_τ₁, CategoryTheory.Limits.cokernel.π_of_epi, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr_hom_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.OplaxFunctor.mapComp_id_left_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapId, FintypeCat.hom_inv_id_apply, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_of_mono₁, CategoryTheory.Bicategory.Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.Pretriangulated.Triangle.shiftFunctor_map_hom₂, CategoryTheory.Limits.coequalizer.existsUnique, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, Homotopy.dNext_cochainComplex, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, Homotopy.nullHomotopicMap'_f, CategoryTheory.Bicategory.Prod.swap_mapComp_hom, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, CategoryTheory.Enriched.FunctorCategory.homEquiv_comp_assoc, CategoryTheory.Presieve.uncurry_pullbackArrows, CategoryTheory.Pseudofunctor.StrongTrans.Modification.vcomp_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.CatEnrichedOrdinary.hComp_assoc_heq, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_assoc, CategoryTheory.Bicategory.LeftLift.ofIdComp_left_as, CategoryTheory.StrictPseudofunctor.id_mapId_inv, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_apply_app, CategoryTheory.ShortComplex.exact_iff_of_forks, SingleObj.pathEquivList_cons, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, PresheafOfModules.sheafificationAdjunction_homEquiv_apply, CategoryTheory.Adjunction.representableBy_homEquiv, CategoryTheory.Functor.Elements.initialOfRepresentableBy_snd, CategoryTheory.Functor.PreservesHomology.preservesCokernel, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_one, Prefunctor.IsCovering.map_injective, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, CategoryTheory.Functor.CorepresentableBy.ext_iff, CategoryTheory.ShortComplex.smul_τ₂, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.Limits.BinaryBicone.inl_snd, CategoryTheory.Functor.CorepresentableBy.homEquiv_symm_comp, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_inv, CategoryTheory.Abelian.Ext.linearEquiv₀_symm_apply, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_as, CategoryTheory.FreeBicategory.mk_associator_inv, CategoryTheory.ShiftedHom.mk₀_neg, CategoryTheory.Join.mapIsoWhiskerLeft_inv_app, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_left, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Functor.toPreimages_obj, CategoryTheory.ShortComplex.liftCycles_homologyπ_eq_zero_of_boundary, CategoryTheory.Bicategory.rightUnitor_comp_assoc, CategoryTheory.HomOrthogonal.matrixDecomposition_symm_apply, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.NonPreadditiveAbelian.lift_map, CategoryTheory.FreeBicategory.locally_thin, CategoryTheory.Functor.homEquivOfIsRightKanExtension_apply_app, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, Mathlib.Tactic.Bicategory.evalComp_nil_cons, Rep.diagonalHomEquiv_apply, CategoryTheory.Limits.IsLimit.homEquiv_symm_naturality, HomologicalComplex.homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.Bicategory.Adj.leftUnitor_hom_τr, CategoryTheory.Pseudofunctor.mapId'_hom_naturality, CategoryTheory.IsDiscrete.subsingleton, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.conjugateIsoEquiv_symm_apply_hom, CategoryTheory.HomOrthogonal.matrixDecompositionAddEquiv_apply, Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of, CategoryTheory.Limits.IsZero.iff_isSplitMono_eq_zero, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f, dNext_comp_right, HomologicalComplex.homotopyCofiber.inlX_desc_f, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, CategoryTheory.Limits.Cotrident.ofπ_ι_app, CategoryTheory.Bicategory.LeftExtension.IsKan.fac, TopologicalSpace.Opens.apply_def, HomologicalComplex.fromOpcycles_d, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.conj_eqToHom_iff_heq, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.Adjunction.homAddEquiv_apply, HomologicalComplex.iCycles_d_assoc, CategoryTheory.Limits.op_zero, CategoryTheory.Functor.linear_iff, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionHomLeft_op, HomotopyCategory.quotient_map_out, CategoryTheory.ShortComplex.rightHomologyι_comp_fromOpcycles, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Limits.coconeOfIsSplitEpi_ι_app, SheafOfModules.Presentation.IsFinite.finite_relations, SemimoduleCat.hom_add, LightProfinite.proj_comp_transitionMapLE, CategoryTheory.FreeBicategory.lift_mapComp, CategoryTheory.ShortComplex.SnakeInput.w₀₂_τ₃, CategoryTheory.ShortComplex.Homotopy.add_h₃, HomologicalComplex₂.d₁_eq', CategoryTheory.Bicategory.Comonad.comul_counit, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f, Rep.freeLiftLEquiv_symm_apply, CategoryTheory.ObjectProperty.rightOrthogonal_iff, CategoryTheory.Preadditive.one_def, CategoryTheory.Over.lift_left, CategoryTheory.Bicategory.leftZigzagIso_inv, CategoryTheory.Functor.toOplaxFunctor'_mapComp, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_id, CategoryTheory.Pretriangulated.Triangle.mor₂_eq_zero_iff_mono₃, CategoryTheory.Mat_.id_def, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.Bicategory.Adjunction.comp_right_triangle_aux, CategoryTheory.Limits.CoproductsFromFiniteFiltered.finiteSubcoproductsCocone_ι_app_eq_sum, CategoryTheory.ShortComplex.cyclesMap'_neg, CategoryTheory.DifferentialObject.d_squared_apply_assoc, CategoryTheory.Limits.biproduct.toSubtype_fromSubtype_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, CategoryTheory.Adjunction.homEquiv_naturality_right_square_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, groupHomology.d₁₀_comp_coinvariantsMk_assoc, CategoryTheory.op_neg, CategoryTheory.Limits.CokernelCofork.map_condition_assoc, CategoryTheory.unitCompPartialBijectiveAux_symm_apply, CategoryTheory.Bicategory.Adj.lIso_hom, AlgebraicTopology.DoldKan.decomposition_Q, CategoryTheory.Limits.hasPullback_over_zero, CategoryTheory.Limits.colimitCoconeOfUnique_cocone_ι, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, HomologicalComplex.extendMap_zero, HomologicalComplex.extendMap_f_eq_zero, CategoryTheory.isCardinalFiltered_iff, CategoryTheory.Bicategory.Prod.sectL_map₂, Prefunctor.symmetrify_map, CategoryTheory.Oplax.StrongTrans.toOplax_naturality, CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc, CategoryTheory.ShortComplex.opcyclesMap'_add, CategoryTheory.ShortComplex.Exact.isZero_X₂_iff, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.prod_id_snd, CategoryTheory.instSmallHomFunctorOppositeTypeColimitCompYoneda, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, CategoryTheory.Bicategory.Adjunction.homEquiv₁_symm_apply, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Bicategory.toNatTrans_conjugateEquiv, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Limits.IsColimit.ι_app_homEquiv_symm, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.op_sub, CategoryTheory.Limits.PullbackCone.isoMk_hom_hom, CategoryTheory.ShortComplex.rightHomologyMap'_smul, CategoryTheory.NonPreadditiveAbelian.add_neg_cancel, HasFibers.inducedFunctor_map_coe, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Subobject.factors_zero, CategoryTheory.IsPullback.inr_fst', SSet.Truncated.HomotopyCategory.subsingleton_hom, CategoryTheory.Pseudofunctor.comp_mapComp, CategoryTheory.Sheaf.instIsLocallyInjectiveHomImageι, Prefunctor.star_snd, CategoryTheory.ComposableArrows.isoMk₀_hom_app, CategoryTheory.Bicategory.Prod.swap_mapComp_inv, homOfEq_heq_left_iff, CategoryTheory.Monad.MonadicityInternal.counitCofork_ι_app, CategoryTheory.PrelaxFunctor.map₂Iso_eqToIso, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Limits.Cofork.IsColimit.homIso_symm_apply, CategoryTheory.ShortComplex.LeftHomologyData.wi_assoc, CategoryTheory.Pretriangulated.Triangle.isZero₁_iff, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, CategoryTheory.Subgroupoid.id_mem_of_nonempty_isotropy, Bicategory.Opposite.opFunctor_map, CategoryTheory.Localization.SmallHom.equiv_shift, CategoryTheory.CartesianClosed.curry_injective, HomologicalComplex₂.ιTotalOrZero_eq_zero, HomologicalComplex.double_d_eq_zero₁, CategoryTheory.ShortComplex.SnakeInput.w₁₃_τ₁, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapComp, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_left_inv_assoc, CategoryTheory.uliftYonedaMap_app_apply, CategoryTheory.ShortComplex.Exact.epi_f_iff, CategoryTheory.Preadditive.zsmul_comp, HomologicalComplex.truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, CategoryTheory.subterminals_thin, CategoryTheory.Bicategory.LeftLift.whiskering_obj, Hom.unmop_inj, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, CategoryTheory.opEquiv_symm_apply, CategoryTheory.Limits.CokernelCofork.π_eq_zero, CategoryTheory.Limits.bicone_ι_π_ne, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac_assoc, CategoryTheory.InducedWideCategory.category_comp_coe, CategoryTheory.congrArg_mpr_hom_right, CategoryTheory.ShrinkHoms.functor_map, CategoryTheory.ShortComplex.neg_τ₃, CategoryTheory.Bicategory.Prod.snd_mapComp_inv, CategoryTheory.Sieve.equalizer_eq_equalizerSieve, CategoryTheory.Bicategory.Adj.Bicategory.associator_hom_τl, CategoryTheory.NonPreadditiveAbelian.lift_σ, CategoryTheory.StrictPseudofunctor.mk''_obj, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, AlgebraicGeometry.SpecToEquivOfLocalRing_eq_iff, CategoryTheory.Bicategory.Pith.comp₂_iso_inv, CategoryTheory.Adjunction.homEquiv_symm_rightAdjointUniq_hom_app, CategoryTheory.Pseudofunctor.map₂_whisker_right_app, CategoryTheory.Abelian.Ext.homEquiv₀_symm_apply, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, CategoryTheory.Limits.WalkingMultispan.inclusionOfLinearOrder_map, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality, CategoryTheory.Bicategory.conjugateEquiv_symm_apply', CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, CategoryTheory.Limits.hasPushout_over_zero, CategoryTheory.cones_obj_obj, Rep.indResHomEquiv_apply_hom, CategoryTheory.NonPreadditiveAbelian.lift_σ_assoc, CategoryTheory.Functor.FullyFaithful.homNatIso_hom_app_down, CategoryTheory.NonPreadditiveAbelian.comp_sub, ModuleCat.homAddEquiv_apply, FreeGroupoid.congr_reverse_comp, CategoryTheory.Functor.PreOneHypercoverDenseData.sieve₁₀_apply, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Adjunction.homAddEquiv_symm_sub, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, HomologicalComplex₂.D₁_totalShift₂XIso_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, CategoryTheory.Bicategory.InducedBicategory.isoMk_hom_hom, CategoryTheory.Bicategory.Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Limits.Cofork.ofπ_ι_app, SkyscraperPresheafFunctor.map'_app, CategoryTheory.Bicategory.whiskerLeft_rightUnitor, Path.isChain_toList_nonempty, CategoryTheory.Limits.WalkingCospan.instSubsingletonHom, CategoryTheory.Functor.currying_functor_obj_map, CategoryTheory.yonedaGrp_map_app, CategoryTheory.comp_eqToHom_heq, CategoryTheory.Preadditive.comp_sub_assoc, AlgebraicGeometry.tilde.map_neg, CategoryTheory.Equalizer.FirstObj.ext_iff, HomologicalComplex.mapBifunctor₁₂.d₁_eq, AlgebraicTopology.DoldKan.Q_zero, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality, CategoryTheory.leftUnitor_def, CategoryTheory.Iso.eHomCongr_inv_comp, CategoryTheory.MonObj.one_eq_one, ChainComplex.mkHom_f_succ_succ, HomologicalComplex.opcyclesMap_zero, HomologicalComplex₂.D₂_totalShift₂XIso_hom, CategoryTheory.Limits.IsLimit.existsUnique, CategoryTheory.sheafHomSectionsEquiv_symm_apply_coe_apply, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp, CategoryTheory.Localization.homEquiv_map, CategoryTheory.FreeBicategory.preinclusion_obj, CategoryTheory.Pseudofunctor.map₂_left_unitor_app_assoc, imageToKernel_epi_of_epi_of_zero, CategoryTheory.CatEnriched.hComp_comp, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, CategoryTheory.ShortComplex.rightHomologyMap_smul, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_η_unmop_app, CategoryTheory.Pseudofunctor.map₂_right_unitor_app_assoc, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_inv, CategoryTheory.Grp_Class.div_comp, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv_def, CategoryTheory.Pseudofunctor.map₂_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.comp_mapComp, CategoryTheory.Pretriangulated.Triangle.mor₃_eq_zero_iff_mono₁, CategoryTheory.Join.opEquiv_functor_map_op_inclLeft, CategoryTheory.Abelian.Pseudoelement.eq_zero_iff, CategoryTheory.finallySmall_iff_exists_small_weakly_terminal_set, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, CategoryTheory.conjugateEquiv_comp, CategoryTheory.map_shrinkYonedaEquiv, CategoryTheory.NatTrans.app_zsmul, CategoryTheory.Mat_.comp_def, CategoryTheory.WithInitial.opEquiv_inverse_map, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.hf, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, AddCommGrpCat.hom_add_apply, SingleObj.toPrefunctor_symm_apply, CategoryTheory.PrelaxFunctor.map₂_hom_inv_isIso_assoc, CategoryTheory.Biprod.inl_ofComponents, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMopMonoidal_ε_unmop_app, CategoryTheory.MonoidalOpposite.tensorLeftMopIso_inv_app_unmop, CategoryTheory.Limits.biproduct.map_eq, CategoryTheory.Preadditive.comp_sub, CategoryTheory.Limits.WalkingSpan.instSubsingletonHom, CategoryTheory.prod.leftUnitor_map, CategoryTheory.Adjunction.homEquiv_apply_eq, CategoryTheory.yonedaEquiv_symm_map, CategoryTheory.tensorLeftHomEquiv_whiskerRight_comp_evaluation, CategoryTheory.Limits.IsLimit.homIso_hom, CategoryTheory.Cat.Hom.equivFunctor_apply, CategoryTheory.Limits.BinaryBicone.inr_fst, CategoryTheory.Functor.map_nsmul, CategoryTheory.Limits.cokernelZeroIsoTarget_hom, AddCommGrpCat.ofHom_injective, DerivedCategory.HomologySequence.δ_comp_assoc, ContinuousCohomology.MultiInd.d_succ, CategoryTheory.Subgroupoid.inclusion_faithful, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_apply, ModuleCat.semilinearMapAddEquiv_symm_apply_apply, CategoryTheory.Limits.CokernelCofork.IsColimit.isZero_of_epi, CategoryTheory.Bicategory.Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Cat.Hom.toNatIso_inv, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_cocone, AlgebraicGeometry.Proj.res_apply, Rep.coinvariantsAdjunction_homEquiv_apply_hom, CategoryTheory.Sieve.toFunctor_app_coe, HomologicalComplex.mapBifunctor₁₂.d₃_eq, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.Join.mapIsoWhiskerLeft_hom_app, HomologicalComplex.biprod_inr_fst_f_assoc, CategoryTheory.PrelaxFunctor.map₂_inv_hom, CategoryTheory.GrothendieckTopology.map_yonedaEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τr, CategoryTheory.Subgroupoid.mem_sInf_arrows, CategoryTheory.Bicategory.conjugateEquiv_iso, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.effectiveEpi_iff_effectiveEpiFamily, CategoryTheory.Cat.HasLimits.homDiagram_obj, CategoryTheory.Sheaf.isLocallySurjective_iff_isIso, CategoryTheory.uliftCoyonedaEquiv_symm_map, CategoryTheory.Bicategory.Prod.sectR_mapId_hom, CategoryTheory.TwoSquare.lanBaseChange_app, MonObj.mopMonObj_mul_unmop, CategoryTheory.Functor.hcongr_hom, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d_assoc, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π, CategoryTheory.NonPreadditiveAbelian.neg_def, CategoryTheory.Linear.toCatCenter_apply_app, CategoryTheory.OplaxFunctor.mapComp_naturality_right, CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso, AlgebraicGeometry.Scheme.IsLocallyDirected.homOfLE_tAux_assoc, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_apply_coe, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_map_base, CategoryTheory.yonedaEquiv_symm_naturality_left, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Bicategory.Prod.swap_mapId_hom, CategoryTheory.PreGaloisCategory.exists_galois_representative, CategoryTheory.CatCenter.app_neg, CategoryTheory.Over.isMonHom_pullbackFst_id_right, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', FundamentalGroupoidFunctor.prodToProdTop_map, TopModuleCat.kerι_comp, HomologicalComplex.homotopyCofiber.d_sndX_assoc, ModuleCat.hom_neg, FDRep.scalar_product_char_eq_finrank_equivariant, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_i, CategoryTheory.Bicategory.conjugateEquiv_whiskerLeft, Hom.toLoc_as, CategoryTheory.GrothendieckTopology.diagramNatTrans_zero, CondensedSet.epi_iff_locallySurjective_on_compHaus, CategoryTheory.Hom.mulEquivCongrRight_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_δ, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapId, dNext_nat, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁, CategoryTheory.LaxFunctor.map₂_associator_app, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.FreeBicategory.mk_right_unitor_hom, CategoryTheory.Bicategory.LeftExtension.whiskering_obj, CategoryTheory.Presheaf.instIsLocallyInjectiveHomιOpposite, CategoryTheory.Functor.map_dite, CategoryTheory.yonedaEquiv_symm_naturality_right, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc, SheafOfModules.pushforwardSections_unitHomEquiv, CategoryTheory.wideInducedFunctor_map, CategoryTheory.PreGaloisCategory.PointedGaloisObject.cocone_app, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, HomologicalComplex.extend.mapX_none, CategoryTheory.Prod.fst_map, CategoryTheory.Equalizer.Sieve.SecondObj.ext_iff, HomologicalComplex.neg_f_apply, CategoryTheory.Over.mapCongr_rfl, CategoryTheory.MonoidalCategory.prodMonoidal_tensorHom, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.Localization.SmallShiftedHom.equiv_apply, LightCondensed.instSmallHom, CategoryTheory.Limits.biproduct.ι_π_ne_assoc, CategoryTheory.StrictPseudofunctor.comp_obj, CategoryTheory.ShortComplex.leftHomologyMap_zero, Bicategory.Opposite.homCategory_id_unop2, CategoryTheory.Limits.cokernelZeroIsoTarget_inv, CategoryTheory.Grp.Hom.hom_one, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, CategoryTheory.StrictPseudofunctor.id_mapComp_inv, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm, CategoryTheory.Bicategory.InducedBicategory.mkHom_eqToHom, CategoryTheory.Bicategory.comp_whiskerLeft_symm_assoc, HomologicalComplex.shape, CategoryTheory.AsSmall.down_map, SSet.stdSimplex.objEquiv_symm_apply, CategoryTheory.ComposableArrows.IsComplex.cokerToKer'_fac, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, AlgebraicGeometry.pointEquivClosedPoint_symm_apply_coe, Homotopy.refl_hom, CategoryTheory.Localization.HasSmallLocalizedHom.small, CategoryTheory.Localization.Preadditive.map_add, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Functor.sheafAdjunctionCocontinuous_homEquiv_apply_val, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_one_assoc, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_yonedaULift_map, SemimoduleCat.homLinearEquiv_symm_apply, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, CochainComplex.HomComplex.Cochain.ofHoms_zero, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_obj, CategoryTheory.uliftYonedaEquiv_symm_map_assoc, CategoryTheory.comp_dite, HomologicalComplex.mapBifunctor₁₂.d₂_eq, Representation.linHom.invariantsEquivRepHom_apply_hom, AlgebraicGeometry.PresheafedSpace.map_comp_c_app, TopCat.Presheaf.coveringOfPresieve_apply, CategoryTheory.Limits.WalkingMultispan.instSubsingletonHomLeft, Bicategory.Opposite.op2_id_unbop, CategoryTheory.isIso_prod_iff, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, CategoryTheory.ShortComplex.liftCycles_leftHomologyπ_eq_zero_of_boundary, CategoryTheory.Sieve.generate_apply, CategoryTheory.Limits.colimitCoconeOfUnique_isColimit_desc, CategoryTheory.Pretriangulated.contractible_distinguished₁, CategoryTheory.Bicategory.leftUnitor_comp, CategoryTheory.Presheaf.isLocallyInjective_toPlus, HomologicalComplex.mapBifunctor₂₃.d₁_eq_zero, CategoryTheory.BicategoricalCoherence.assoc'_iso, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Comonad.adj_unit, CategoryTheory.NonPreadditiveAbelian.neg_neg, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.Sum.functorEquiv_unitIso, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, TopModuleCat.hom_neg, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.Limits.coprod.inl_snd_assoc, CategoryTheory.toQuotientPaths_map, CategoryTheory.Cat.associator_hom_toNatTrans, CategoryTheory.Presheaf.isLocallyInjective_forget, Mathlib.Tactic.Bicategory.evalComp_nil_nil, CategoryTheory.Cat.Hom.instIsIsoFunctorαCategoryToNatTransHomHom, CategoryTheory.unop_sub, CategoryTheory.Localization.Preadditive.zero_add', dNext_eq_zero, CategoryTheory.ActionCategory.hom_as_subtype, SimplicialObject.Split.cofan_inj_naturality_symm, CategoryTheory.MonoidalOpposite.tensorLeftIso_inv_app_unmop, CategoryTheory.Pseudofunctor.isoMapOfCommSq_eq, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃, CategoryTheory.cocones_obj_obj, CategoryTheory.Abelian.FunctorCategory.coimageObjIso_hom, CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_π_apply, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, CategoryTheory.Localization.Preadditive.neg'_add'_self, CategoryTheory.LaxFunctor.mapComp_naturality_left, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, CategoryTheory.GrothendieckTopology.plusMap_zero, CategoryTheory.Functor.RepresentableBy.ofIsoObj_homEquiv, CochainComplex.mappingCone.lift_f, CategoryTheory.ComposableArrows.IsComplex.zero, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Functor.CorepresentableBy.coyoneda_homEquiv, ModuleCat.monoidalClosed_pre_app, CategoryTheory.Adjunction.homEquiv_leftAdjointUniq_hom_app, AlgebraicGeometry.pointsPi_surjective, CategoryTheory.Bicategory.associatorNatIsoMiddle_inv_app, SemimoduleCat.hom_smul, CategoryTheory.Limits.pullback_fst_map_snd_isPullback, HomologicalComplex₂.totalAux.d₁_eq', CategoryTheory.ShortComplex.add_τ₁, CategoryTheory.GrothendieckTopology.uliftYoneda_obj_val_map_down, SSet.stdSimplex.nonDegenerateEquiv_symm_apply_coe, CategoryTheory.InducedCategory.homLinearEquiv_symm_apply_hom, CategoryTheory.Pseudofunctor.map₂_whisker_right_assoc, CategoryTheory.Arrow.equivSigma_apply_snd_fst, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.WithInitial.ofCommaMorphism_app, SimplicialObject.Splitting.cofan_inj_comp_app_assoc, HomologicalComplex.ι_mapBifunctorFlipIso_hom_assoc, CategoryTheory.prodOpEquiv_counitIso_inv_app, CategoryTheory.Comonad.beckCoalgebraFork_π_app, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_apply_φ, TopologicalSpace.OpenNhds.apply_mk, CategoryTheory.MonoidalOpposite.tensorIso_inv_app_unmop, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app_assoc, CommGrpCat.ofHom_injective, CochainComplex.HomComplex.CohomologyClass.toHom_mk, CategoryTheory.ShortComplex.leftHomologyMap'_zero, CategoryTheory.Limits.prod.inr_fst, CategoryTheory.Adjunction.homEquiv_naturality_right, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_hom, CategoryTheory.GrpObj.zpow_comp_assoc, CategoryTheory.Functor.IsRepresentedBy.iff_exists_representableBy, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, CochainComplex.HomComplex.Cochain.add_v, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_inv_iso_hom, CategoryTheory.CosimplicialObject.cechConerveEquiv_apply, CategoryTheory.Bicategory.prod_rightUnitor_hom_snd, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.Bicategory.precomp_map, CategoryTheory.Discrete.productEquiv_functor_map, CategoryTheory.Bicategory.pentagon_hom_hom_inv_hom_hom, CategoryTheory.Bicategory.conjugateEquiv_symm_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Bicategory.prod_associator_hom_snd, CategoryTheory.Bicategory.Adjunction.right_triangle, CategoryTheory.Bicategory.triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.injective_iff_rlp_monomorphisms_zero, CategoryTheory.ShortComplex.rightHomologyMap'_zero, HomologicalComplex.biprod_inl_snd_f, CochainComplex.toSingle₀Equiv_symm_apply_f_zero, CategoryTheory.ComposableArrows.homMk₀_app, CategoryTheory.Limits.preservesCokernel_zero, ModuleCat.semilinearMapAddEquiv_apply, Path.isChain_cons_toList_nonempty, CategoryTheory.Preadditive.comp_add_assoc, CategoryTheory.curryingIso_hom_toFunctor_map_app, CategoryTheory.quotientPathsTo_map, CategoryTheory.Oplax.OplaxTrans.Modification.naturality, CategoryTheory.Quotient.comp_mk, CategoryTheory.ShortComplex.HomologyMapData.smul_left, CategoryTheory.Functor.mapZeroObject_hom, Rep.coindIso_hom_hom_hom, ChainComplex.alternatingConst_map_f, CategoryTheory.BicategoricalCoherence.right_iso, CategoryTheory.Bicategory.Equivalence.right_triangle_hom, ModuleCat.freeHomEquiv_symm_apply, CategoryTheory.Bicategory.Prod.fst_obj, CategoryTheory.MonObj.comp_pow_assoc, CategoryTheory.Functor.homologySequenceδ_comp, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_inv, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, SemimoduleCat.hom_sum, CategoryTheory.instEffectiveEpiFamily, CategoryTheory.Bicategory.associatorNatIsoRight_inv_app, CategoryTheory.Comma.ext_iff, CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp_π_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right, CategoryTheory.ExponentiableMorphism.homEquiv_apply_eq, CategoryTheory.Groupoid.vertexGroup_mul, CategoryTheory.ShortComplex.Homotopy.symm_h₁, CategoryTheory.PreZeroHypercover.shrink_I₀, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π_assoc, CategoryTheory.PreGaloisCategory.endMulEquivAutGalois_pi, CategoryTheory.Localization.homEquiv_isoOfHom_inv, CategoryTheory.Bicategory.leftUnitor_comp_inv_assoc, CategoryTheory.Localization.homEquiv_id, CategoryTheory.NatTrans.app_sub, CategoryTheory.Bicategory.leftUnitor_whiskerRight_assoc, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_two_assoc, AlgebraicTopology.DoldKan.P_add_Q_f, ModuleCat.homEquiv_extendScalarsId, CategoryTheory.NatTrans.app_neg, CategoryTheory.Limits.kernelForkBiproductToSubtype_isLimit, CategoryTheory.ShortComplex.SnakeInput.w₁₃, groupHomology.d₂₁_comp_d₁₀_assoc, AddCommGrpCat.hom_neg, CategoryTheory.Limits.hasImage_zero, AlgebraicTopology.DoldKan.hσ'_eq', CategoryTheory.GrothendieckTopology.map_yonedaULiftEquiv, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, CategoryTheory.Bicategory.leftUnitor_inv_congr, Hom.cast_heq, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_inv, CategoryTheory.Limits.kernelBiproductToSubtypeIso_inv, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range, CategoryTheory.Bicategory.Adj.forget₁_mapComp, CategoryTheory.ShortComplex.π_isoOpcyclesOfIsColimit_hom, CategoryTheory.Limits.Trident.IsLimit.homIso_natural, HomologicalComplex.dFrom_comp_xNextIsoSelf_assoc, CategoryTheory.Bicategory.rightUnitor_hom_congr, SemiNormedGrp.hom_zsum, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_inv, CategoryTheory.Preadditive.sum_comp', CategoryTheory.CatEnrichedOrdinary.homEquiv_id, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp_assoc, CategoryTheory.Pseudofunctor.comp_mapId, HomologicalComplex₂.D₁_D₂, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_μ_unmop_unmop, CategoryTheory.Bicategory.Prod.swap_mapId_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, CochainComplex.HomComplex.Cochain.toSingleMk_sub, CategoryTheory.Limits.HasZeroMorphisms.comp_zero, CategoryTheory.sum.inlCompInverseAssociator_hom_app_down_down, CategoryTheory.unop_sum, CategoryTheory.MonoidalOpposite.mopMopEquivalenceInverseMonoidal_η_unmop_unmop, CategoryTheory.Discrete.productEquiv_inverse_map, CategoryTheory.Bicategory.Prod.sectR_map, CategoryTheory.Sieve.toUliftFunctor_app_down_coe, CategoryTheory.ShortComplex.leftHomologyMap'_add, CategoryTheory.kernelCokernelCompSequence.inr_φ_fst, CategoryTheory.StrictPseudofunctor.mk''_map₂, CategoryTheory.Linear.rightComp_apply, CategoryTheory.ShiftedHom.mk₀_smul, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc, CategoryTheory.MonoidalCategory.tensor_dite, CategoryTheory.NonPreadditiveAbelian.sub_self, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_inv, CategoryTheory.ShortComplex.Homotopy.h₀_f, Bicategory.Opposite.op2_associator_hom, CategoryTheory.ShortComplex.opcyclesMap'_neg, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, SimplicialObject.Splitting.cofan_inj_eq_assoc, CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_hom, FintypeCat.homMk_apply, CategoryTheory.GrothendieckTopology.uliftYoneda_map_val_app_down, CategoryTheory.PreZeroHypercover.sum_f, CategoryTheory.Abelian.Ext.mk₀_homEquiv₀_apply, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, ComplexShape.Embedding.AreComplementary.hom_ext', CategoryTheory.Abelian.FunctorCategory.imageObjIso_inv, CategoryTheory.Adjunction.homEquiv_id, CommRingCat.coproductCocone_ι, CategoryTheory.Bicategory.Adj.Bicategory.leftUnitor_inv_τr, CategoryTheory.CatEnriched.hComp_id, CategoryTheory.instReflectsIsomorphismsForgetTypeHom, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, AlgebraicGeometry.LocallyRingedSpace.stalkMap_congr_hom, CategoryTheory.Adjunction.homEquiv_naturality_left, HomologicalComplex.mapBifunctor.d₁_eq, CategoryTheory.Lax.OplaxTrans.id_app, CategoryTheory.Oplax.StrongTrans.homCategory_comp_as_app, CategoryTheory.Bicategory.rightZigzagIso_hom, CategoryTheory.LaxFunctor.id_mapComp, CategoryTheory.Functor.IsRepresentedBy.representableBy_homEquiv_apply, CategoryTheory.Preadditive.sub_comp, CategoryTheory.Functor.map_one, ChainComplex.alternatingConst_obj, CategoryTheory.Cat.leftUnitor_inv_app, CategoryTheory.Functor.toPseudoFunctor_obj, CategoryTheory.GradedObject.ιMapObjOrZero_eq_zero, CategoryTheory.Bicategory.associator_inv_naturality_middle_assoc, CategoryTheory.LaxFunctor.map₂_leftUnitor_app, CategoryTheory.Preadditive.mono_iff_cancel_zero, CategoryTheory.BicategoricalCoherence.refl_iso, CategoryTheory.Bicategory.rightUnitor_comp_inv_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.Limits.inl_pushoutZeroZeroIso_hom, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂_assoc, CategoryTheory.WithTerminal.opEquiv_functor_map, CategoryTheory.PreGaloisCategory.evaluation_aut_injective_of_isConnected, PresheafOfModules.zero_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τl, CategoryTheory.Lax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Limits.Cotrident.IsColimit.homIso_apply_coe, CategoryTheory.CatEnrichedOrdinary.Hom.base_eqToHom, AddCommGrpCat.homAddEquiv_apply, CategoryTheory.Over.coreHomEquivToOverSections_homEquiv, CategoryTheory.Functor.PreservesHomology.preservesKernel, CategoryTheory.MorphismProperty.isColocal_iff, Homotopy.nullHomotopy'_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_hom_hom, CategoryTheory.Limits.IsInitial.subsingleton_to, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Preadditive.neg_comp_assoc, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_map₂, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, CategoryTheory.Abelian.Pseudoelement.zero_apply, CategoryTheory.Limits.biprod.lift_desc, Hom.unop_mk, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, CategoryTheory.Preadditive.instEpiNegHom, CategoryTheory.eqToHom_heq_id_dom, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, Bicategory.Opposite.bicategory_rightUnitor_hom_unop2, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f, CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_hom, CategoryTheory.Functor.prod_δ_fst, CategoryTheory.Preadditive.neg_iso_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv, SemiNormedGrp.hom_nsum, CategoryTheory.cokernel_zero_of_nonzero_to_simple, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three, CategoryTheory.ShortComplex.zero_τ₂, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionHomLeft_unop, CategoryTheory.GrothendieckTopology.yonedaEquiv_yoneda_map, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Functor.IsStronglyCocartesian.map_self, CategoryTheory.Bicategory.Strict.associator_eqToIso, CategoryTheory.Linear.smul_comp, CategoryTheory.Pretriangulated.Triangle.smul_hom₁, CategoryTheory.ShortComplex.RightHomologyMapData.add_φQ, CategoryTheory.Functor.PreservesZeroMorphisms.map_zero, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, CategoryTheory.ShortComplex.leftHomologyMap_smul, CategoryTheory.Cat.Hom.equivFunctor_symm_apply, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, CategoryTheory.Functor.comp_homologySequenceδ_assoc, HomologicalComplex.homotopyCofiber.d_fstX_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight, PresheafOfModules.toPresheaf_map_sheafificationHomEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τr, CategoryTheory.OplaxFunctor.mapComp'_eq_mapComp, CategoryTheory.ShortComplex.opcyclesMap'_smul, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_comp, CategoryTheory.InducedWideCategory.category_id_coe, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_symm_apply, CategoryTheory.ShortComplex.LeftHomologyData.liftK_π_eq_zero_of_boundary_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.map₂_app_hom, SSet.stdSimplex.face_singleton_compl, CategoryTheory.Functor.partialRightAdjointHomEquiv_map_comp, CategoryTheory.Bicategory.triangle_assoc, CategoryTheory.Limits.binaryBiconeOfIsSplitEpiOfKernel_inr, CategoryTheory.Bicategory.leftUnitorNatIso_inv_app, TopologicalSpace.Opens.val_apply, HomologicalComplex.Hom.fAddMonoidHom_apply, CategoryTheory.down_comp, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, Hom.eq_cast_iff_heq, CategoryTheory.equiv_punit_iff_unique, CategoryTheory.MonoidalCategory.externalProductBifunctor_obj_map, AlgebraicGeometry.IsOpenImmersion.lift_app, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, CochainComplex.shiftFunctor_obj_d, CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.GrothendieckTopology.yonedaEquiv_apply, CategoryTheory.PreZeroHypercover.shrink_f, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, CategoryTheory.OplaxFunctor.map₂_rightUnitor_app_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.shrinkYonedaEquiv_symm_map, CategoryTheory.ComposableArrows.IsComplex.zero', CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, CategoryTheory.ShortComplex.leftHomologyMap'_smul, CategoryTheory.Functor.currying_functor_map_app, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv, CategoryTheory.map_coyonedaEquiv, CategoryTheory.Adjunction.homEquiv_symm_apply, CategoryTheory.ShortComplex.cyclesMap_add, FintypeCat.instFullForgetHomCarrier, CochainComplex.mappingCone.d_fst_v, CategoryTheory.DifferentialObject.zero_f, CategoryTheory.Oplax.OplaxTrans.whiskerRight_as_app, CategoryTheory.Limits.isCokernelEpiComp_desc, CategoryTheory.MonObj.mul_eq_mul, AlgebraicGeometry.Scheme.stalkMap_congr, CategoryTheory.Bicategory.associator_naturality_middle_assoc, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, AlgebraicGeometry.Spec.homEquiv_symm_apply, ModuleCat.ihom_ev_app, Bicategory.Opposite.bicategory_rightUnitor_inv_unop2, CategoryTheory.ShortComplex.hasHomology_of_hasKernel, HomologicalComplex.mapBifunctor₂₃.d₂_eq_zero, SimplicialObject.Splitting.IndexSet.eqId_iff_len_le, CategoryTheory.ObjectProperty.smul_mem_trW_iff, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.map_yonedaEquiv', CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_as_app, CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_as_app, CategoryTheory.ObjectProperty.leftOrthogonal_iff, CategoryTheory.Limits.initial.subsingleton_to, CategoryTheory.Functor.map_sum, Rep.indResHomEquiv_symm_apply_hom, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, AlgebraicGeometry.Scheme.Hom.stalkMap_congr_hom, CategoryTheory.kernelCokernelCompSequence.ι_φ_assoc, CategoryTheory.CategoryOfElements.toCostructuredArrow_map, CategoryTheory.Functor.toOplaxFunctor'_mapId, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom, CategoryTheory.Bicategory.RightExtension.w, CategoryTheory.Bicategory.Prod.fst_mapId_inv, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom, CategoryTheory.Bicategory.Adj.leftUnitor_hom_τl, CategoryTheory.Pretriangulated.shift_opShiftFunctorEquivalenceSymmHomEquiv_unop_assoc, CategoryTheory.Functor.homEquivOfIsLeftKanExtension_apply_app, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_inv, CategoryTheory.Oplax.OplaxTrans.Modification.id_app, CategoryTheory.Sum.functorEquiv_counitIso, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, Hom.cast_eq_iff_heq, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_obj, CategoryTheory.Bicategory.Pith.pseudofunctorToPith_mapComp_hom_iso, CategoryTheory.Bicategory.mateEquiv_apply', CategoryTheory.nerve.edgeMk_surjective, CategoryTheory.Bicategory.Equivalence.left_triangle_hom, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Preadditive.coforkOfCokernelCofork_pt, CategoryTheory.Adjunction.equivHomsetRightOfNatIso_symm_apply, CategoryTheory.Pretriangulated.Triangle.zero_hom₂, CategoryTheory.Bicategory.conjugateEquiv_comp, CategoryTheory.OplaxFunctor.mapComp_id_left, CategoryTheory.LaxFunctor.map₂_leftUnitor_app_assoc, CategoryTheory.epi_iff_forall_injective, CategoryTheory.Cat.eqToHom_app, skyscraperPresheaf_map, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.Limits.binaryBiconeOfIsSplitMonoOfCokernel_fst, HomologicalComplex.ι_mapBifunctorFlipIso_inv, CategoryTheory.ParametrizedAdjunction.homEquiv_naturality_three_assoc, StalkSkyscraperPresheafAdjunctionAuxs.toSkyscraperPresheaf_app, CategoryTheory.Functor.IsStronglyCocartesian.universal_property, CategoryTheory.Pretriangulated.opShiftFunctorEquivalenceSymmHomEquiv_apply_assoc, CategoryTheory.Bicategory.postcomp_map, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, CategoryTheory.LaxFunctor.map₂_rightUnitor, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality_assoc, CategoryTheory.Bicategory.triangle_assoc_comp_right_assoc, CategoryTheory.LaxFunctor.mapId'_eq_mapId, CategoryTheory.ShortComplex.f_pOpcycles, CategoryTheory.Functor.mapLinearMap_apply, CategoryTheory.shrinkYonedaEquiv_shrinkYoneda_map, CategoryTheory.Adjunction.CoreHomEquivUnitCounit.homEquiv_counit, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, HomologicalComplex.cylinder.πCompι₀Homotopy.inlX_nullHomotopy_f, CategoryTheory.WithTerminal.opEquiv_inverse_map, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.Equivalence.symmEquivInverse_map_app, CategoryTheory.prod.associator_map, CategoryTheory.ShiftedHom.opEquiv'_add_symm, CategoryTheory.Functor.functorHomEquiv_symm_apply_app_app, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_map₂, CategoryTheory.Mon.Hom.hom_one, CategoryTheory.Bicategory.rightUnitorNatIso_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, AddCommGrpCat.hom_zsmul, CategoryTheory.colimitYonedaHomEquiv_π_apply, CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_inv_assoc, CategoryTheory.heq_eqToHom_comp_iff, CategoryTheory.ShortComplex.isoCyclesOfIsLimit_inv_ι, heq_of_homOfEq_ext, CategoryTheory.ShortComplex.Splitting.s_r_assoc, CategoryTheory.mono_iff_forall_injective, CategoryTheory.ShortComplex.opcyclesMap'_zero, CategoryTheory.ShortComplex.leftHomologyMap_neg, CategoryTheory.kernelCokernelCompSequence.φ_π_assoc, CategoryTheory.uliftCoyonedaEquiv_comp, Action.FintypeCat.ofMulAction_apply, HomologicalComplex.liftCycles_homologyπ_eq_zero_of_boundary_assoc, CategoryTheory.LaxFunctor.PseudoCore.mapIdIso_inv, CategoryTheory.CatEnrichedOrdinary.Hom.base_id, CategoryTheory.yonedaEquiv_symm_app_apply, CategoryTheory.Bicategory.leftUnitor_comp_assoc, SemimoduleCat.homAddEquiv_symm_apply_hom, CategoryTheory.Arrow.equivSigma_symm_apply_right, FDRep.finrank_hom_simple_simple, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.Bicategory.LeftLift.w, CategoryTheory.Join.mapIsoWhiskerRight_inv_app, AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst, CategoryTheory.Pseudofunctor.mapId'_inv_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.tensorLeftHomEquiv_symm_naturality, CategoryTheory.Functor.map_surjective, CategoryTheory.nerve.homEquiv_symm_apply, CategoryTheory.mono_to_simple_zero_of_not_iso, SheafOfModules.unitHomEquiv_apply_coe, AlgebraicTopology.DoldKan.PInfty_add_QInfty, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app_assoc, CategoryTheory.preadditiveYonedaObj_map, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app, CategoryTheory.ShortComplex.f_pOpcycles_assoc, CategoryTheory.ShortComplex.ShortExact.comp_δ_assoc, CategoryTheory.prod.inverseAssociator_map, CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π, CategoryTheory.Limits.IsLimit.homEquiv_apply, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, CochainComplex.HomComplex.Cochain.single_v_eq_zero, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Adjunction.homEquiv_naturality_left_square_assoc, CategoryTheory.Limits.cokernel.condition_apply, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Limits.compYonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Limits.KernelFork.map_condition_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map₂_comp, groupCohomology.d₀₁_eq_zero, CategoryTheory.yonedaEquiv_comp, CategoryTheory.prod_comp_snd, HomologicalComplex₂.ιTotal_totalFlipIso_f_inv, CategoryTheory.unitCompPartialBijective_symm_apply, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, CategoryTheory.Bicategory.triangle_assoc_comp_left_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_map, CategoryTheory.Localization.structuredArrowEquiv_apply, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Limits.kernelSubobject_zero, CategoryTheory.Limits.Bicone.ι_of_isLimit
|