Documentation Verification Report

symm

πŸ“ Source: MathlibTest/symm.lean

Statistics

MetricCount
Definitionssymm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm
85
Theoremssymm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm, symm
196
Total281

AbsoluteValue.IsEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AbsoluteValue.IsEquivβ€”β€”β€”

AbsolutelyContinuousOnInterval

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AbsolutelyContinuousOnIntervalβ€”β€”disjWithin_comm

AddCommGroup.ModEq

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AddCommGroup.ModEqβ€”β€”AddCommGroup.modEq_iff_nsmul

AddCommute

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AddCommuteβ€”β€”β€”

AddCon

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”Setoid.symm'

AddConstEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
7 mathmath: symm_symm, coe_symm_toEquiv, toEquiv_symm, symm_trans_self, symm_refl, self_trans_symm, equivUnits_symm_apply_symm_apply

AddEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
327 mathmath: CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_symm_apply, AddMonoidAlgebra.mapDomainRingEquiv_apply, AddSubmonoid.LocalizationMap.symm_comp_ofAddEquivOfLocalizations_apply, WithConv.addEquiv_symm_apply_ofConv, AddAction.stabilizerEquivStabilizer_symm, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_symm_apply, addMonoidHomCongrLeftEquiv_apply, AddAut.inv_symm, toMultiplicative_apply_symm_apply, AddMonCat.uliftFunctor_map, CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, addSubgroupMap_symm_apply, Multiset.equivDFinsupp_symm_apply, AddAutAdditive_apply_symm_apply, Complex.equivRealProdAddHom_symm_apply, AddMonoidHom.ker_comp_addEquiv, invFun_eq_symm, AddMonoidHom.toAddEquiv_symm_apply, Matrix.entryAddHom_eq_comp, Finsupp.sumFinsuppAddEquivProdFinsupp_symm_inl, coprodPUnit_symm_apply, HahnSeries.addOppositeEquiv_symm_support, AddAut.mulRight_symm_apply, FreeAddGroup.freeAddGroupCongr_symm, AddSubmonoid.fromLeftNeg_leftNegEquiv_symm, AddSubgroup.comap_equiv_eq_map_symm, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, AddSubmonoid.val_neg_addUnitsTypeEquivIsAddUnitAddSubmonoid_symm_apply, Matrix.transposeAddEquiv_symm, QuotientAddGroup.equivQuotientZSMulOfEquiv_symm, MultilinearMap.domDomCongrEquiv_symm_apply, AddSubmonoid.LocalizationMap.addEquivOfLocalizations_symm_apply, AddEquivClass.apply_coe_symm_apply, AddSubmonoid.add_leftNegEquiv_symm, uliftMultiplesHom_symm_apply, funUnique_symm_apply, coe_prodComm_symm, symm_comp_eq, AddHom.toAddEquiv_symm_apply, RingEquiv.op_apply_symm_apply, MulOpposite.coe_opLinearEquiv_symm_addEquiv, AddEquivClass.coe_symm_apply_apply, AddAutAdditive_symm_apply_symm_apply, AddSubmonoid.LocalizationMap.ofAddEquivOfLocalizations_eq_iff_eq, AddSubsemigroup.mem_map_equiv, mk_coe', MonoidAlgebra.opRingEquiv_symm_apply, comp_symm_eq, neg_symm, AddMonoidHom.apply_ofInjective_symm, MonoidAlgebra.symm_mapDomainAddEquiv, Finsupp.sumFinsuppAddEquivProdFinsupp_symm_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, sigmaFinsuppAddEquivDFinsupp_symm_apply, zmultiplesAddHom_symm_apply, finsuppUnique_symm, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, AddMonoidAlgebra.opRingEquiv_symm_apply, AddGrpCat.uliftFunctor_map, AddCommGrpCat.Colimits.colimitCocone_ΞΉ_app, multiplesAddHom_symm_apply, AddSubmonoid.centerCongr_symm_apply_coe, symmEquiv_symm_apply_symm_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, Matrix.coe_ofAddEquiv_symm, symm_ofLexAddEquiv, toMultiplicativeLeft_apply_symm_apply, coe_addMonoidHom_comp_coe_addMonoidHom_symm, self_comp_symm, symm_addMonoidHomCongrRight, CochainComplex.HomComplex.CohomologyClass.toSmallShiftedHom_mk, Matrix.uniqueAddEquiv_symm_apply, AddSubmonoid.centerToAddOpposite_symm_apply_coe, AddMonoidHom.ofLeftInverse_symm_apply, Subalgebra.mopAlgEquivOp_symm_apply, AddSubsemigroup.centerToAddOpposite_symm_apply_coe, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, AddAut.conj_symm_apply, toMultiplicativeRight_apply_symm_apply, Matrix.entryAddMonoidHom_eq_comp, uniqueProd_symm_apply, AddSubsemigroup.comap_equiv_eq_map_symm, FreeAbelianGroup.liftAddEquiv_symm_apply, addMonoidHomCongrLeft_apply, LinearEquiv.funUnique_symm_apply, AddSubmonoid.LocalizationMap.symm_comp_ofAddEquivOfLocalizations_apply', symm_apply_apply, AddAut.coe_inv, toAddMagmaCatIso_inv, toAdditive_toMultiplicative_symm_apply, AlgEquiv.op_apply_symm_apply, withZeroCongr_symm, DirectSum.addEquivProdDirectSum_symm_apply_toFun, CategoryTheory.Iso.addCommGroupIsoToAddEquiv_symm_apply, coe_addEquiv_lpPiLp_symm, toAddMonCatIso_inv, MulAutMultiplicative_symm_apply_symm_apply, FreeAbelianGroup.equivFinsupp_symm_apply, ModuleCat.homAddEquiv_symm_apply_hom, piUnique_symm_apply, toAddCommMonCatIso_inv, AddCommGrpCat.homAddEquiv_symm_apply_hom, CategoryTheory.ProjectiveResolution.extMk_hom, AddSubsemigroup.topEquiv_symm_apply_coe, op_symm_apply_symm_apply, Rep.toAdditive_symm_apply, symm_mapAddSubgroup, AddSubmonoid.comap_equiv_eq_map_symm, LinearEquiv.coe_toAddEquiv_symm, AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply, AddSubgroup.map_equiv_eq_comap_symm, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkβ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, AddAction.stabilizerEquivStabilizer_symm_apply, IsPrimitiveRoot.zmodEquivZPowers_symm_apply_pow', toEquiv_symm, QuadraticForm.dualProdIsometry_invFun, AddCon.comapQuotientEquivOfSurj_symm_mk, symmEquiv_apply_symm_apply, Subring.mopRingEquivOp_symm_apply, AddMonoid.IsTorsion.torsionAddEquiv_symm_apply_coe, add_submonoid_map_symm_apply, symm_toLexAddEquiv, AddSubmonoid.val_addUnitsTypeEquivIsAddUnitAddSubmonoid_symm_apply, mapAddSubgroup_symm_apply, Complex.equivRealProdAddHom_symm_apply_re, Complex.equivRealProdAddHom_symm_apply_im, Subsemiring.addEquivOp_symm_apply_coe, mulOp_symm_apply, Finsupp.mapRange.addEquiv_symm, toMultiplicativeLeft_symm_apply_symm_apply, coprodAssoc_symm_apply_inr_inr, groupCohomology.norm_ofAlgebraAutOnUnits_eq, symm_bijective, AddSubmonoid.leftNegEquiv_symm_add, CategoryTheory.InducedCategory.homAddEquiv_symm_apply_hom, piCongrRight_symm, AddGroupExtension.Equiv.coe_symm, eq_comp_symm, CochainComplex.HomComplex.CohomologyClass.equiv_toSmallShiftedHom_mk, AlgEquiv.symm_toAddEquiv, mulOp_apply, AddSubgroup.addSubgroupOfEquivOfLe_symm_apply_coe_coe, piAdditive_symm_apply, symm_toContinuousAddEquiv, AddCommGrpCat.Colimits.Quot.desc_colimitCocone, Finsupp.domCongr_symm, AddSubmonoid.leftNegEquiv_symm_fromLeftNeg, DirectSum.addEquivProdDirectSum_symm_apply_support', AddSubsemigroup.map_equiv_eq_comap_symm, starL_symm_apply, AddSubgroup.topEquiv_symm_apply_coe, SkewMonoidAlgebra.toFinsuppAddEquiv_symm_apply, apply_symm_apply, symm_addMonoidHomCongrLeftEquiv, AddAction.stabilizerEquivStabilizer_neg, addMonoidHomCongrRightEquiv_symm_apply, AddSubgroup.map_equiv_eq_comap_symm', equivLike_neg_eq_symm, DFinsupp.mapRange.addEquiv_symm, toIntLinearEquiv_symm, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, AlgEquiv.op_symm_apply_symm_apply, IsPrimitiveRoot.zmodEquivZPowers_symm_apply_pow, Multiset.toFinsupp_symm_apply, AddSubmonoid.topEquiv_symm_apply_coe, MonoidAlgebra.symm_mapRangeAddEquiv, Representation.ofModule_asModule_act, Matrix.piAddEquiv_symm_apply, QuotientAddGroup.quotientKerEquivOfRightInverse_symm_apply, coprodAssoc_symm_apply_inl, punitCoprod_symm_apply, symmEquiv_symm_apply_apply, starL'_symm_apply, AddSubgroup.centerCongr_symm_apply_coe, prodAdditive_symm_apply, CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_symm_apply, coe_toEquiv_symm, coe_toLinearEquiv_symm, coe_prodAssoc_symm, AddLocalization.addEquivOfQuotient_symm_mk', RestrictScalars.lsmul_apply_apply, groupHomology.H1AddEquivOfIsTrivial_symm_apply, toMultiplicativeRight_symm_apply_symm_apply, AddSubmonoid.LocalizationMap.addEquivOfLocalizations_symm_eq_addEquivOfLocalizations, coe_addEquiv_lpBCF_symm, addEquivOfAddOrderOfEq_symm_apply_gen, addSubmonoidMap_symm_apply, AddOpposite.coe_symm_opAddEquiv, AddSubsemigroup.centerCongr_symm_apply_coe, symm_trans_apply, symm_comp_self, opOp_symm_apply, RestrictScalars.addEquiv_symm_map_smul_smul, RingEquiv.op_symm_apply_symm_apply, symm_symm, RingEquiv.nonUnitalSubsemiringMap_symm_apply_coe, AddSubgroup.mem_map_equiv, CategoryTheory.HomOrthogonal.matrixDecompositionAddEquiv_symm_apply, HahnSeries.addOppositeEquiv_symm_orderTop, symm_apply_eq, AddCommGroup.DirectLimit.congr_symm_apply_of, toAddGrpIso_inv, AddCommGrpCat.uliftFunctor_map, IsPrimitiveRoot.zmodEquivZPowers_symm_apply_zpow', QuaternionAlgebra.coe_symm_addEquivProd, CategoryTheory.InjectiveResolution.extMk_hom, AddAut.inv_apply, ofLeftInverse'_symm_apply, AddMonoidAlgebra.domCongr_symm, AddSubgroup.centerToAddOpposite_symm_apply_coe, AddOpposite.opAddEquiv_symm_apply, toMultiplicative_symm_apply_symm_apply, CategoryTheory.Adjunction.homAddEquiv_symm_apply, val_piAddUnits_symm_apply, cast_symm_apply, AddMonoidAlgebra.symm_mapDomainRingEquiv, additiveMultiplicative_symm_apply, AddLocalization.addEquivOfQuotient_symm_mk, DistribMulAction.toAddEquiv_symm_apply, AddAut.inv_def, coe_symm_toNatLinearEquiv, finsuppUnique_symm_apply_support_val, HahnSeries.addOppositeEquiv_symm_leadingCoeff, CategoryTheory.Abelian.Ext.addEquivβ‚€_symm_apply, Representation.ofModule_asAlgebraHom_apply_apply, QuotientAddGroup.quotientBot_symm_apply, MulEquiv.toAdditive_symm_apply_symm_apply, refl_symm, Finsupp.lift_symm_apply, AddSubmonoid.LocalizationMap.ofAddEquivOfDom_comp_symm, addSubgroupCongr_symm_apply, AddAut.symm_inv, MulEquiv.toAdditive_apply_symm_apply, coe_addMonoidHom_symm_comp_coe_addMonoidHom, AddLocalization.addEquivOfQuotient_symm_addMonoidOf, AlgEquiv.opComm_symm_apply_symm_apply, symmEquiv_apply_apply, DirectSum.decomposeAddEquiv_symm_apply, MulAutMultiplicative_apply_symm_apply, AddChar.doubleDualEquiv_symm_doubleDualEmb_apply, symm_comapAddSubgroup, symm_addMonoidHomCongrRightEquiv, AddCommGrpCat.Colimits.Quot.desc_quotQuotUliftAddEquiv, subsemigroupMap_symm_apply_coe, ContinuousMap.addEquivBoundedOfCompact_symm_apply, AddMonoidAlgebra.domCongr_apply, AddSubgroup.map_symm_eq_iff_map_eq, mapMatrix_symm, finsuppAddEquivDFinsupp_symm_apply, Finsupp.liftAddHom_symm_apply_apply, MulOpposite.opLinearEquiv_symm_toAddEquiv, CategoryTheory.Abelian.Ext.addEquivBiprod_symm_apply, neg'_symm_apply, AddCon.comapQuotientEquivOfSurj_symm_mk', Finsupp.sumFinsuppAddEquivProdFinsupp_symm_inr, HahnSeries.addOppositeEquiv_symm_apply_coeff, val_neg_piAddUnits_symm_apply, Finsupp.curryAddEquiv_symm_apply, Finsupp.liftAddHom_symm_apply, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_symm_apply, AddSubmonoid.map_equiv_eq_comap_symm, AddSubgroup.comap_equiv_eq_map_symm', AddAut.mulLeft_apply_symm_apply, eq_symm_apply, WeierstrassCurve.Jacobian.Point.toAffineAddEquiv_symm_apply, RingEquiv.coe_toAddEquiv_symm, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, addMonoidAlgebraAddEquivDirectSum_symm_apply, coprodCongr_symm_apply, finsuppUnique_symm_apply_apply, prodUnique_symm_apply, coprodComm_symm_apply, toNatLinearEquiv_symm, Equiv.addEquiv_symm_apply, WithLp.addEquiv_symm_apply, AddChar.doubleDualEmb_doubleDualEquiv_symm_apply, toAddUnits_symm_apply, LinearEquiv.arrowCongrAddEquiv_symm_apply, AddUnits.coe_opEquiv_symm, Subsemiring.mopRingEquivOp_symm_apply, WeierstrassCurve.Projective.Point.toAffineAddEquiv_symm_apply, AlgEquiv.subalgebraMap_symm_apply_coe, ModuleCat.semilinearMapAddEquiv_symm_apply_apply, coprodAssoc_symm_apply_inr_inl, symm_mk, symm_trans_self, RestrictScalars.addEquiv_symm_map_algebraMap_smul, AddCircle.equivAddCircle_symm_apply_mk, CategoryTheory.Abelian.Ext.biprodAddEquiv_symm_apply, DFinsupp.liftAddHom_symm_apply, AddMonoidAlgebra.symm_mapDomainAddEquiv, toAddSemigrpIso_inv, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, AddCon.quotientKerEquivOfRightInverse_symm_apply, toContinuousAddEquiv_symm_apply, CochainComplex.HomComplex.CohomologyClass.toHom_mk, MulOpposite.opAddEquiv_symm_apply, apply_eq_iff_symm_apply, toAddCommGrpIso_inv, AddSubmonoid.mem_map_equiv, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, ofBijective_apply_symm_apply, AddAut.congr_apply, ofLeftInverse_symm_apply, Matrix.conjTransposeAddEquiv_symm, AddCommMonCat.uliftFunctor_map, AlternatingMap.domDomCongrEquiv_symm_apply, WithLp.coe_symm_addEquiv, self_trans_symm, Matrix.compAddEquiv_symm_apply, AddSubmonoid.leftNegEquiv_symm_eq_neg, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, AddMonoidAlgebra.symm_mapRangeAddEquiv, strictMono_symm, IsPrimitiveRoot.zmodEquivZPowers_symm_apply_zpow, op_apply_symm_apply, RestrictScalars.smul_def, Subring.addEquivOp_symm_apply_coe, QuaternionAlgebra.coe_symm_addEquivTuple, comapAddSubgroup_symm_apply, addEquivOfAddOrderOfEq_symm, AddAut.congr_symm_apply, symm_addMonoidHomCongrLeft, SemimoduleCat.homAddEquiv_symm_apply_hom, coe_symm_toIntLinearEquiv, eq_symm_comp, uliftZMultiplesHom_symm_apply

AddGroupExtension.Equiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: refl_symm_apply, symm_symm_apply, coe_symm, trans_symm_apply

AddGroupExtension.IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AddGroupExtension.IsConjβ€”β€”map_neg
AddMonoidHom.instAddMonoidHomClass
neg_one_zsmul
add_assoc
add_one_zsmul
neg_add_cancel
zero_zsmul
zero_add
mul_zsmul'
mul_one
neg_neg
one_zsmul
Mathlib.Tactic.Group.zsmul_trick_zero'
add_zero

AddSubgroup.Commensurable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AddSubgroup.Commensurableβ€”β€”β€”

AddSubgroup.IsComplement'

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AddSubgroup.IsComplement'β€”β€”neg_neg
neg_add_rev
AddSubgroup.isComplement'_def
AddSubgroup.isComplement_iff_bijective
Equiv.bijective_comp
Equiv.comp_bijective

AddValuation.IsEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AddValuation.IsEquivβ€”β€”Valuation.IsEquiv.symm

AffineEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
35 mathmath: coe_symm_toEquiv, symm_trans_self, AffineIsometryEquiv.coe_symm_toAffineEquiv, self_trans_symm, AffineSubspace.comap_symm, prodAssoc_symm_apply, ContinuousAffineEquiv.prodComm_symm_apply, AffineSubspace.map_symm, toEquiv_symm, coe_homothetyUnitsMulHom_apply_symm, linear_symm, inv_def, apply_symm_apply, AffineSubspace.topEquiv_symm_apply_coe, equivUnitsAffineMap_symm_apply_symm_apply, symm_apply_apply, coe_constVSub_symm, apply_eq_iff_eq_symm_apply, ofEq_symm, constVAdd_symm, image_symm, prodComm_symm, prodCongr_symm, AffineBasis.coord_vadd, vaddConst_symm_apply, ContinuousAffineEquiv.toAffineEquiv_symm, coe_toHomeomorphOfFiniteDimensional_symm, ContinuousAffineEquiv.coe_symm_toAffineEquiv, val_inv_equivUnitsAffineMap_apply, preimage_symm, AffineIsometryEquiv.toAffineEquiv_symm, pointReflection_symm, symm_refl, ContinuousAffineEquiv.prodAssoc_symm_apply, ofBijective.symm_eq

AffineIsometryEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
23 mathmath: coe_symm_toAffineEquiv, symm_trans_self, EuclideanGeometry.reflection_symm, coe_symm_trans, toContinuousAffineEquiv_symm, ofTop_symm_apply_coe, coe_inv, ofEq_symm, apply_symm_apply, symm_bijective, symm_constVSub, symm_symm, symm_apply_apply, self_trans_symm, coe_vaddConst_symm, pointReflection_symm, coe_symm_toContinuousAffineEquiv, AffineSubspace.isometryEquivMap.apply_symm_apply, coe_symm_toIsometryEquiv, toAffineEquiv_symm, toHomeomorph_symm, coe_symm_toHomeomorph, toIsometryEquiv_symm

AffineSubspace.Parallel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AffineSubspace.Parallelβ€”β€”AffineSubspace.map_map
AffineEquiv.coe_trans_to_affineMap
AffineEquiv.constVAdd_add
neg_add_cancel
AffineEquiv.constVAdd_zero
AffineEquiv.coe_refl_to_affineMap
AffineSubspace.map_id

AffineSubspace.SOppSide

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AffineSubspace.SOppSideβ€”β€”AffineSubspace.sOppSide_comm

AffineSubspace.SSameSide

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AffineSubspace.SSameSideβ€”β€”AffineSubspace.sSameSide_comm

AffineSubspace.WOppSide

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AffineSubspace.WOppSideβ€”β€”AffineSubspace.wOppSide_comm

AffineSubspace.WSameSide

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AffineSubspace.WSameSideβ€”β€”AffineSubspace.wSameSide_comm

AlgEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
315 mathmath: MvPolynomial.pUnitAlgEquiv_symm_monomial, PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, coe_restrictScalars_symm, AddMonoidAlgebra.symm_mapRangeAlgEquiv, leftInverse_symm, coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, IsLocalization.algEquiv_symm_mk', Quaternion.snd_imJ_dualNumberEquiv_symm, AlgCat.hom_inv_associator, MvPolynomial.comapEquiv_symm_coe, self_trans_symm, Submodule.coe_mapAlgEquiv_symm_apply, DoubleQuot.coe_quotQuotEquivQuotOfLEₐ_symm, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, Algebra.IsPushout.equiv_symm_algebraMap_left, DirectSum.decomposeAlgEquiv_symm_apply, AdicCompletion.of_ofAlgEquiv_symm, Algebra.TensorProduct.congr_symm_apply, Polynomial.algEquivOfCompEqX_symm, MvPolynomial.pUnitAlgEquiv_symm_apply, Polynomial.quotientSpanXSubCAlgEquiv_symm_apply, LinearEquiv.conjAlgEquiv_symm_apply_apply, toOpposite_symm_apply, CliffordAlgebraDualNumber.equiv_symm_eps, IsAdjoinRoot.algEquiv_symm, StandardEtalePresentation.toPresentation_algebra_smul, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_eq_mk, Algebra.TensorProduct.prodRight_symm_tmul, Algebra.TensorProduct.tensorTensorTensorComm_symm, IsGaloisGroup.mulEquivAlgEquiv_apply_symm_apply, IntermediateField.botEquiv_symm, AlgCat.hom_inv_rightUnitor, Polynomial.pUnitAlgEquiv_symm_toPowerSeries, adjoinRootXPowSubCEquiv_symm_eq_root, Quaternion.snd_re_dualNumberEquiv_symm, coe_inv, symm_apply_eq, CliffordAlgebra.equivBaseChange_symm_apply, MvPolynomial.supportedEquivMvPolynomial_symm_X, DoubleQuot.quotQuotEquivQuotOfLEₐ_symm_toRingEquiv, DoubleQuot.quotQuotEquivComm_symmₐ, PowerBasis.equivAdjoinSimple_symm_aeval, NumberField.InfinitePlace.smul_apply, symm_toEquiv_eq_symm, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.quotEquivQuotMap_symm_apply_mk, aut_inv, ofBijective_symm_apply_apply, Polynomial.algEquivCMulXAddC_symm_eq, FractionalIdeal.mapEquiv_symm, arrowCongr_apply, Algebra.Presentation.quotientEquiv_symm, MvPolynomial.evalβ‚‚_const_pUnitAlgEquiv_symm, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, NumberField.InfinitePlace.smul_eq_comap, Algebra.TensorProduct.tensorTensorTensorComm_symm_tmul, equivCongr_symm, NumberField.InfinitePlace.smul_mk, LocallyConstant.congrRightₐ_symm_apply_apply, Subalgebra.mopAlgEquivOp_symm_apply, StarAlgEquiv.toAlgEquiv_symm, TensorAlgebra.equivFreeAlgebra_symm_ΞΉ, matPolyEquiv_symm_apply_coeff, IntermediateField.equivOfEq_symm, PiTensorProduct.constantBaseRingEquiv_symm, equivCongr_apply, Polynomial.toMvPolynomial_eq_rename_comp, Subalgebra.LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, Quaternion.fst_imK_dualNumberEquiv_symm, QuaternionAlgebra.imK_swapEquiv_symm_apply, StandardEtalePair.equivMvPolynomialQuotient_symm_apply, CategoryTheory.Iso.toAlgEquiv_symm_apply, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, sumArrowEquivProdArrow_symm_apply_inr, CommAlgCat.algEquivOfIso_symm_apply, MvPolynomial.optionEquivRight_symm_apply, op_apply_symm_apply, AdjoinRoot.equiv'_symm_toAlgHom, LinearEquiv.symm_conjAlgEquiv, MulSemiringAction.toAlgEquiv_symm_apply, NumberField.ComplexEmbedding.IsConj.symm, eq_symm_apply, piCongrRight_symm, symm_toMulEquiv, toLinearEquiv_symm, IsSymmetricAlgebra.equiv_symm_comp, MonoidAlgebra.symm_mapRangeAlgEquiv, ofAlgHom_symm_apply, FiniteField.frobeniusAlgEquiv_symm_apply, polyEquivTensor_symm_apply_tmul, Polynomial.Bivariate.equivMvPolynomial_symm_X_0, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, cast_symm_apply, NumberField.InfinitePlace.smul_coe_apply, Ideal.quotientKerAlgEquivOfRightInverse_symm_apply, CliffordAlgebraQuaternion.equiv_symm_apply, MonoidAlgebra.tensorEquiv_symm_single, Matrix.charpoly.optionEquivLeft_symm_univ_isHomogeneous, addMonoidAlgebraAlgEquivDirectSum_symm_apply, restrictScalars_symm_apply, AdicCompletion.mk_ofAlgEquiv_symm, apply_symm_apply, coe_symm_toLinearEquiv, FiniteField.frobeniusAlgEquivOfAlgebraic_symm_apply, coe_apply_coe_coe_symm_apply, Polynomial.Bivariate.equivMvPolynomial_symm_C, coe_polyEquivTensor'_symm, PowerBasis.equivAdjoinSimple_symm_gen, MvPolynomial.algebraTensorAlgEquiv_symm_X, Matrix.kroneckerTMulAlgEquiv_symm_apply, toUnder_inv_right_apply, mapMatrix_symm, NumberField.InfinitePlace.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq, symm_toAddEquiv, symm_trans_apply, QuaternionAlgebra.re_swapEquiv_symm_apply, Quaternion.fst_imJ_dualNumberEquiv_symm, PowerBasis.equivOfRoot_symm, AlgCat.hom_inv_leftUnitor, IsAdjoinRoot.algEquiv_def, toLieEquiv_symm_apply, CliffordAlgebra.reverseOpEquiv_opComm, Polynomial.algEquivAevalNegX_symm_apply, symm_comp, Localization.algEquiv_symm_mk', autCongr_symm, Matrix.dualNumberEquiv_symm_apply, Polynomial.Bivariate.equivMvPolynomial_symm_X_1, galLiftEquiv_symm_apply, Algebra.pushoutDesc_apply, Quaternion.fst_imI_dualNumberEquiv_symm, DoubleQuot.coe_quotQuotEquivQuotSupₐ_symm, Polynomial.algEquivOfCompEqX_symm_apply, IsSymmetricAlgebra.equiv_symm_apply, HahnSeries.toPowerSeriesAlg_symm_apply_coeff, Localization.algEquiv_symm_mk, Polynomial.algEquivAevalXAddC_symm_apply, mk_coe', op_symm_apply_symm_apply, LocallyConstant.congrLeftₐ_symm_apply_apply, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mkₐ, Matrix.reindexAlgEquiv_symm, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, QuaternionAlgebra.imI_swapEquiv_symm_apply, SymmetricAlgebra.equivMvPolynomial_symm_X, LinearMap.toMatrixAlgEquiv_symm, CliffordAlgebraComplex.equiv_symm_apply, Algebra.TensorProduct.cancelBaseChange_symm_tmul, NormedRing.algEquivComplexOfComplete_symm_apply, algHomUnitsEquiv_apply_symm_apply, coe_coe_symm_apply_coe_apply, extendScalarsOfSurjective_symm, symm_mk, RingCon.coe_comapQuotientEquivRangeₐ_symm_mk, Algebra.TensorProduct.assoc_symm_tmul, Algebra.TensorProduct.opAlgEquiv_symm_apply, matrixEquivTensor_apply_symm, symm_apply_apply, StarAlgEquiv.coe_symm_toAlgEquiv, LinearEquiv.algEquivOfRing_symm_apply, toAlgebraIso_inv, IsLocalization.algEquivOfAlgEquiv_symm_apply, WithLp.unitizationAlgEquiv_symm_apply_ofLp, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, Subalgebra.lTensorBot_symm_apply, MvPolynomial.finSuccEquiv_comp_C_eq_C, Quaternion.snd_imK_dualNumberEquiv_symm, AdjoinRoot.algEquivOfAssociated_symm, matPolyEquiv_symm_C, opComm_apply_symm_apply, LaurentPolynomial.invert_symm, CommAlgCat.associator_inv_hom, MonoidAlgebra.domCongr_symm, Matrix.compAlgEquiv_symm_apply, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, AddMonoidAlgebra.symm_commAlgEquiv, CliffordAlgebra.prodEquiv_symm_apply, MvPolynomial.renameSymmetricSubalgebra_symm_apply_coe, HahnSeries.ofPowerSeriesAlg_apply_coeff, MvPolynomial.mapAlgEquiv_symm, RingCon.quotientQuotientEquivQuotientₐ_symm_mk, Polynomial.IsDistinguishedAt.algEquivQuotient_symm_apply, AddMonoidAlgebra.tensorEquiv_symm_single, AdjoinRoot.equiv'_symm_apply, AdicCompletion.mk_smul_top_ofAlgEquiv_symm, ContinuousAlgEquiv.symm_toAlgEquiv, Algebra.TensorProduct.comm_symm_tmul, NumberField.ComplexEmbedding.isConj_symm, Ideal.quotientEquivAlg_symm, MonoidAlgebra.scalarTensorEquiv_symm_single, Algebra.TensorProduct.quotIdealMapEquivTensorQuot_symm_tmul, autCongr_apply, Polynomial.toFinsuppIsoAlg_symm_apply_toFinsupp, StandardEtalePresentation.toPresentation_Οƒ', Matrix.piAlgEquiv_symm_apply, Polynomial.taylorEquiv_symm, NumberField.InfinitePlace.comap_smul, IntermediateField.topEquiv_symm_apply_coe, PowerBasis.equivOfMinpoly_symm, AddMonoidAlgebra.curryAlgEquiv_symm_single, AddMonoidAlgebra.domCongr_symm, Subalgebra.topEquiv_symm_apply_coe, AdicCompletion.mk_ofAlgEquiv_symm_eq_evalOneₐ, MvPolynomial.algebraTensorAlgEquiv_symm_map, rightInverse_symm, QuaternionAlgebra.imJ_swapEquiv_symm_apply, ofLinearEquiv_symm, Matrix.kroneckerAlgEquiv_symm_apply, Ideal.quotientKerAlgEquivOfSurjective_symm_apply, FreeLieAlgebra.universalEnvelopingEquivFreeAlgebra_symm_apply, Algebra.Presentation.algebraTensorAlgEquiv_symm_relation, ofLeftInverse_symm_apply, Algebra.TensorProduct.Algebra.TensorProduct.commRight_symm_tmul, quotientBot_symm_mk, val_inv_algHomUnitsEquiv_symm_apply, moduleEndSelfOp_symm_apply, Subalgebra.rTensorBot_symm_apply, LinearMap.toMatrixAlgEquiv'_symm, Matrix.uniqueAlgEquiv_symm_apply, MvPolynomial.sumAlgEquiv_symm_apply, TensorAlgebra.equivDirectSum_symm_apply, MvPolynomial.evalβ‚‚_pUnitAlgEquiv_symm, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, MonoidAlgebra.symm_commAlgEquiv, AddMonoidAlgebra.scalarTensorEquiv_symm_single, ofAlgHom_symm, MonoidAlgebra.curryAlgEquiv_symm_single, comp_symm, moduleEndSelf_symm_apply, refl_symm, StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, MvPolynomial.optionEquivLeft_symm_apply, opComm_symm_apply_symm_apply, IsAdjoinRoot.ofAlgEquiv_algEquiv, matPolyEquiv_symm_map_eval, CommAlgCat.isoMk_inv, endVecAlgEquivMatrixEnd_symm_apply_apply, IsLocalization.algEquiv_symm_apply, AdjoinRoot.quotEquivQuotMap_symm_apply, piCongrLeft_symm_apply, StandardEtalePresentation.toPresentation_val, mopMatrix_symm_apply, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, Matrix.transposeAlgEquiv_symm_apply, Polynomial.algEquivCMulXAddC_symm_apply, CliffordAlgebra.evenEquivEvenNeg_symm_apply, Matrix.toLinAlgEquiv'_symm, Quaternion.snd_imI_dualNumberEquiv_symm, arrowCongr_symm, Algebra.IsPushout.equiv_symm_algebraMap_right, matPolyEquiv_symm_X, FractionalIdeal.map_map_symm, IsFractionRing.algEquivOfAlgEquiv_symm, MvPolynomial.optionEquivLeft_symm_C_X, CliffordAlgebra.equivOfIsometry_symm, CliffordAlgebra.involuteEquiv_symm_apply, FractionalIdeal.map_symm_map, StandardEtalePresentation.toPresentation_relation, prodUnique_symm_apply, invFun_eq_symm, symm_trans_self, InfiniteGalois.limitToAlgEquiv_symm_apply, symm_symm, uniqueProd_symm_apply, symm_toRingEquiv, IsLocalization.algEquivOfAlgEquiv_symm, Polynomial.residueFieldMapCAlgEquiv_symm_X, coe_algEquiv_lpBCF_symm, MvPolynomial.algebraTensorAlgEquiv_symm_monomial, Subalgebra.equivOfEq_symm, AdjoinRoot.symm_mapAlgEquiv, MvPolynomial.optionEquivLeft_symm_X, MvPolynomial.renameEquiv_symm, subalgebraMap_symm_apply_coe, funUnique_symm_apply, symm_bijective, MvPolynomial.supportedEquivMvPolynomial_symm_C, AdjoinRoot.algEquivOfEq_symm, Algebra.TensorProduct.opAlgEquiv_symm_tmul, prodCongr_symm_apply, MvPolynomial.optionEquivLeft_symm_C_C, Ideal.quotientEquivAlgOfEq_symm, Subalgebra.algEquivOpMop_symm_apply_coe, Algebra.TensorProduct.lid_symm_apply, DoubleQuot.quotQuotEquivQuotSupₐ_symm_toRingEquiv, ofBijective_apply_symm_apply, opOp_symm_apply, Algebra.TensorProduct.leftComm_symm_tmul, IntermediateField.intermediateFieldMap_symm_apply_coe, Matrix.toLpLinAlgEquiv_symm_apply, toRingEquiv_symm, AlgebraicGeometry.localRingHom_comp_stalkIso, StarAlgEquiv.ofAlgEquiv_symm, Algebra.TensorProduct.congr_symm, piCongrLeft'_symm_apply, ofRingEquiv_symm_apply, Algebra.TensorProduct.rid_symm_apply, Quaternion.fst_re_dualNumberEquiv_symm, coe_restrictScalars_symm', Equiv.algEquiv_symm_apply, SkewMonoidAlgebra.domCongr_symm, polyEquivTensor_symm_apply_tmul_eq_smul, Algebra.TensorProduct.comm_symm, Matrix.toLinAlgEquiv_symm, Algebra.botEquiv_symm_apply, Polynomial.residueFieldMapCAlgEquiv_symm_C, StandardEtalePresentation.equivRing_symm_X, NumberField.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq, Polynomial.algEquivAevalXAddC_symm, MvPolynomial.esymmAlgEquiv_symm_apply, Shrink.algEquiv_symm_apply, Localization.coe_algEquiv_symm, Localization.algEquiv_symm_apply, AdicCompletion.ofAlgEquiv_symm_of

Algebra.IsPushout

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Algebra.IsPushoutβ€”IsBaseChange.of_equiv
Algebra.to_smulCommClass
RingHomInvPair.ids
AddEquiv.map_add'
TensorProduct.induction_on
smul_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
IsScalarTower.right
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Algebra.smul_def
one_mul
equiv_tmul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_left_comm
smul_add
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
Equiv.left_inv
Equiv.right_inv
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mul_one

AntisymmRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AntisymmRelβ€”β€”β€”

Antivary

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Antivary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”le_of_not_gt
LT.lt.not_ge

AntivaryOn

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”AntivaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”le_of_not_gt
LT.lt.not_ge

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Associatedβ€”β€”mul_assoc
Units.mul_inv
mul_one

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsBigO
SeminormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”β€”congr_left
neg_left
neg_sub

Asymptotics.IsBigOTVS

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsBigOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Pi.instSub
SubNegMonoid.toSub
β€”β€”neg_sub
neg_left

Asymptotics.IsBigOWith

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsBigOWith
SeminormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”β€”congr_left
neg_left
neg_sub

Asymptotics.IsEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
β€”β€”Asymptotics.IsLittleO.symm
Asymptotics.IsLittleO.trans_isBigO
isLittleO
isBigO_symm

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsLittleO
SeminormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”β€”neg_sub
neg_left

Asymptotics.IsLittleOTVS

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsLittleOTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Pi.instSub
SubNegMonoid.toSub
β€”β€”neg_sub
neg_left

Asymptotics.IsTheta

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsThetaβ€”β€”β€”

Asymptotics.IsThetaTVS

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Asymptotics.IsThetaTVS
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
SeminormedAddGroup.toContinuousENorm
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”β€”β€”

BialgEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
20 mathmath: symm_comp, apply_symm_apply, invFun_eq_symm, toEquiv_symm, toBialgIso_symm, CategoryTheory.Iso.toBialgEquiv_symm, toHopfAlgIso_symm, CategoryTheory.Iso.toHopfAlgEquiv_symm, ofBialgHom_symm, symm_toCoalgEquiv, coe_toEquiv_symm, coe_symm_toEquiv, Bialgebra.TensorProduct.rid_symm_apply, CommBialgCat.isoMk_inv, symm_apply_apply, Bialgebra.TensorProduct.lid_symm_apply, comp_symm, toHopfAlgIso_inv, Bialgebra.TensorProduct.assoc_symm_tmul, toBialgIso_inv

Bundle.ContMDiffRiemannianMetric

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAddCommMonoid
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
ContinuousLinearMap.funLike
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
instIsTopologicalAddGroupReal
ContinuousLinearMap.addCommMonoid
IsTopologicalSemiring.toContinuousAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousLinearMap.module
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
inner
β€”β€”

Bundle.ContinuousRiemannianMetric

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAddCommMonoid
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
ContinuousLinearMap.funLike
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
instIsTopologicalAddGroupReal
ContinuousLinearMap.addCommMonoid
IsTopologicalSemiring.toContinuousAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousLinearMap.module
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
inner
β€”β€”

Bundle.RiemannianMetric

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAddCommMonoid
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
ContinuousLinearMap.funLike
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
instIsTopologicalAddGroupReal
ContinuousLinearMap.addCommMonoid
IsTopologicalSemiring.toContinuousAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousLinearMap.module
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
inner
β€”β€”

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
79 mathmath: CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, CategoryTheory.Localization.uniq_symm, symm_unit, symmEquivFunctor_obj, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, rightOp_counitIso_inv_app, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Action.leftUnitor_inv_hom, CategoryTheory.Comon.monoidal_rightUnitor_inv_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Action.whiskerRight_hom, TwoP.swapEquiv_symm, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, mkHom_id_inverse, Rep.homEquiv_apply_hom, symm_unitIso, CategoryTheory.CatCommSq.hInv_hInv, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, CategoryTheory.Comon.monoidal_whiskerLeft_hom, symmEquivFunctor_map, CategoryTheory.Comon.monoidal_leftUnitor_hom_hom, rightOp_unitIso_hom_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, CategoryTheory.ComposableArrows.opEquivalence_functor_map_app, CategoryTheory.Monoidal.instIsMonoidalTransportedSymmEquivalenceTransported, CategoryTheory.Comon.monoidal_whiskerRight_hom, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, CategoryTheory.Comon.monoidal_associator_hom_hom, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Adjunction.rightOp_eq, CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app, IsTriangulated.instIsTriangulatedFunctorSymmOfInverse, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, isMonoidal_symm, symmEquiv_counitIso, symm_counit, symm_functor, CategoryTheory.Adjunction.leftOp_eq, CategoryTheory.CatCommSq.vInv_vInv, rightOp_counitIso_hom_app, Action.tensorHom_hom, Action.associator_hom_hom, symm_counitIso, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, IsTriangulated.instIsTriangulatedInverseSymmOfFunctor, Action.whiskerLeft_hom, rightOp_unitIso_inv_app, Rep.MonoidalClosed.linearHomEquiv_hom, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.Comon.monoidal_leftUnitor_inv_hom, CategoryTheory.Comon.monoidal_rightUnitor_hom_hom, Rep.homEquiv_symm_apply_hom, pow_neg_one, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app, Rep.ihom_coev_app_hom, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, Action.rightUnitor_hom_hom, IsTriangulated.symm, CategoryTheory.Comon.monoidal_associator_inv_hom, Action.associator_inv_hom, TopCat.Presheaf.presheafEquivOfIso_functor_map_app, CategoryTheory.MonoidalClosed.ofEquiv_curry_def, Action.rightUnitor_inv_hom, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, Bipointed.swapEquiv_symm, CategoryTheory.Comon.monoidal_tensorHom_hom, TopCat.Presheaf.presheafEquivOfIso_inverse_map_app, CategoryTheory.Comon.monoidal_tensorObj_comon_counit, CommShift.instSymm, symm_inverse, Action.leftUnitor_hom_hom, symmEquivInverse_map_app, CategoryTheory.Comon.monoidal_tensorObj_comon_comul

CategoryTheory.Equivalence.IsTriangulated

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.IsTriangulated
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.CommShift.instCommShiftFunctorSymm
CategoryTheory.Equivalence.CommShift.instCommShiftInverseSymm
β€”CategoryTheory.Equivalence.CommShift.instSymm
instIsTriangulatedFunctorSymmOfInverse
instIsTriangulatedInverse
instIsTriangulatedInverseSymmOfFunctor
instIsTriangulatedFunctor

CategoryTheory.Iso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
279 mathmath: CategoryTheory.SingleFunctors.shiftIso_add, SheafOfModules.pushforward_assoc, Bicategory.Opposite.op2_associator, CategoryTheory.Monoidal.InducingFunctorData.rightUnitor_eq, CategoryTheory.equivOfTensorIsoUnit_unitIso, CategoryTheory.Equivalence.mapGrp_counitIso, CategoryTheory.Functor.isoWhiskerRight_twice_assoc, toCoalgEquiv_symm, CategoryTheory.Bicategory.eqToHomTransIso_refl_left, ModuleCat.restrictScalarsCongr_symm, Bicategory.Opposite.op2_associator_inv, CategoryTheory.equivEssImageOfReflective_unitIso, conjAut_apply, CategoryTheory.MonoOver.congr_unitIso, isoCongr_symm_apply, CategoryTheory.Bicategory.Prod.sectL_mapId_inv, imageToKernel_unop, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_snd_app, CategoryTheory.Monoidal.transportStruct_associator, CategoryTheory.NatIso.op_rightUnitor, CategoryTheory.Join.mapPairEquiv_unitIso, CategoryTheory.Join.mapPairEquiv_counitIso, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso, CategoryTheory.Functor.CorepresentableBy.equivOfIsoObj_symm_apply, CategoryTheory.shiftFunctorAdd'_zero_add, CategoryTheory.Bicategory.eqToHomTransIso_refl_refl, CategoryTheory.BicategoricalCoherence.left'_iso, CategoryTheory.NatIso.unop_rightUnitor, CategoryTheory.SingleFunctors.shiftIso_add', CategoryTheory.Functor.commShiftOp_iso_eq, symm_symm_eq, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso, CategoryTheory.Center.tensorUnit_Ξ², self_symm_id, CategoryTheory.MonoidalCoherence.assoc'_iso, CategoryTheory.MonoOver.mapIso_unitIso, CategoryTheory.Bicategory.leftZigzagIso_symm, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.Monad.algebraEquivOfIsoMonads_unitIso, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionUnitIso, CategoryTheory.IsSifted.factorization_prodComparison_colim, imageToKernel_op, SimplexCategory.revEquivalence_unitIso, CategoryTheory.MonoOver.mapIso_counitIso, CategoryTheory.NatIso.op_isoWhiskerLeft, CategoryTheory.Monoidal.InducingFunctorData.associator_eq, CategoryTheory.Functor.isoWhiskerLeft_twice, CategoryTheory.Pseudofunctor.mapComp_id_left, CategoryTheory.MonoidalCoherence.tensor_right_iso, op_symm, CategoryTheory.Equivalence.symm_unitIso, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, symm_eq_iff, CategoryTheory.BicategoricalCoherence.tensorRight_iso, CategoryTheory.Bicategory.Prod.sectR_mapComp_inv, CategoryTheory.mop_associator, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, eHomCongr_symm, CategoryTheory.Localization.Lifting.ofIsos_iso, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.Center.tensor_Ξ², AlgebraicGeometry.Scheme.homeoOfIso_symm, CategoryTheory.Pseudofunctor.mapComp_id_right, CategoryTheory.skeletonEquivalence_unitIso, CategoryTheory.Pseudofunctor.mapComp'_comp_id, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Bicategory.Prod.sectL_mapComp_hom, CategoryTheory.Pi.isoApp_symm, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.ShortComplex.RightHomologyData.mapOpcyclesIso_eq, symm_hom, CategoryTheory.MonoidalCoherence.right'_iso, CategoryTheory.Equivalence.mapMon_unitIso, CategoryTheory.Bicategory.Equivalence.right_triangle, CategoryTheory.Bicategory.Equivalence.left_triangle, AlgebraicGeometry.Scheme.coe_homeoOfIso_symm, CategoryTheory.op_leftUnitor, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_fst_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_fst_app, CategoryTheory.Bicategory.Prod.sectR_mapId_inv, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Aut.Aut_inv_def, CategoryTheory.Functor.isoWhiskerLeft_right, CategoryTheory.NatIso.op_isoWhiskerRight, toLinearEquiv_symm, CategoryTheory.Center.tensorUnit_snd_Ξ², CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, CategoryTheory.Functor.RepresentableBy.equivOfIsoObj_symm_apply, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_counitIso, CategoryTheory.GradedObject.comapEquiv_unitIso, CategoryTheory.BicategoricalCoherence.right'_iso, CategoryTheory.Limits.IsLimit.equivIsoLimit_symm_apply, PresheafOfModules.pullback_assoc, CategoryTheory.Sum.natIsoOfWhiskerLeftInlInr_eq, CategoryTheory.Functor.isoWhiskerRight_left_assoc, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_snd_app, CategoryTheory.Functor.isoWhiskerRight_twice, CategoryTheory.Bicategory.eqToHomTransIso_refl_right, CategoryTheory.NatIso.op_symm, coreAssociator, symm_self_id, CategoryTheory.BraidedCategory.yang_baxter_iso, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionUnitIso, CategoryTheory.Bicategory.adjointifyCounit_left_triangle, CategoryTheory.Equivalence.unop_counitIso, symm_inv, CategoryTheory.Equivalence.mapCommGrp_unitIso, BialgEquiv.toBialgIso_symm, CategoryTheory.Functor.commShiftPullback_iso_eq, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.NatIso.unop_symm, AlgebraicGeometry.PresheafedSpace.sheafIsoOfIso_inv, CategoryTheory.Equivalence.mapCommMon_unitIso, Mathlib.Tactic.Bicategory.naturality_inv, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso_unop, CategoryTheory.Bicategory.Prod.sectL_mapId_hom, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, CategoryTheory.Functor.CoreMonoidal.ofOplaxMonoidal_Ξ΅Iso, unop_symm, CategoryTheory.Functor.isoWhiskerLeft_right_assoc, toBialgEquiv_symm, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionUnitIso, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, ModuleCat.matrixEquivalence_unitIso, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, symm_mk, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso_op, CategoryTheory.shiftFunctorAdd'_add_zero, BialgEquiv.toHopfAlgIso_symm, CategoryTheory.op_rightUnitor, CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso_hom_τ₃, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_snd_app, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Equivalence.mapGrp_unitIso, CategoryTheory.NatIso.unop_whiskerRight, toHopfAlgEquiv_symm, CategoryTheory.BraidedCategory.hexagon_reverse_iso, CategoryTheory.Limits.PullbackCone.unop_ΞΉ_app, CategoryTheory.ShortComplex.LeftHomologyData.mapLeftHomologyIso_eq, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_obj_map_fst_app, CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.NatIso.op_associator, CategoryTheory.Monoidal.transportStruct_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, CategoryTheory.Monoidal.transportStruct_rightUnitor, CategoryTheory.Limits.colimitPointwiseProductToProductColimit_app, CategoryTheory.ShortComplex.HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, CategoryTheory.Equivalence.inverseFunctorMapIso_symm_eq_isoInverseOfIsoFunctor, CategoryTheory.unop_leftUnitor, CategoryTheory.rightDistributor_assoc, CategoryTheory.NatIso.unop_leftUnitor, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_counitIso, CategoryTheory.NatIso.unop_associator, CategoryTheory.Bicategory.Prod.sectL_mapComp_inv, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.Monad.algebraEquivOfIsoMonads_counitIso, CategoryTheory.NatIso.op_leftUnitor, CategoryTheory.Equivalence.mapCommMon_counitIso, CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso_inv_τ₁, CategoryTheory.MonoOver.congr_inverse, CategoryTheory.Limits.CategoricalPullback.toCatCommSqOver_map_fst_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.leftActionOfOppositeLeftAction_actionAssocIso_unop, CategoryTheory.Endofunctor.Coalgebra.equivOfNatIso_unitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, CategoryTheory.Equivalence.mapMon_counitIso, CategoryTheory.leftDistributor_rightDistributor_assoc, SimplicialObject.opEquivalence_unitIso, SheafOfModules.pushforwardCongr_symm, CategoryTheory.Equivalence.trans_counitIso, isoCongr_apply, HomologicalComplex.mapBifunctorFlipIso_flip, CategoryTheory.ShortComplex.LeftHomologyData.homologyIso_leftHomologyData, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, CategoryTheory.Bicategory.rightZigzagIso_symm, SSet.opEquivalence_unitIso, CategoryTheory.ShortComplex.RightHomologyData.mapRightHomologyIso_eq, Mathlib.Tactic.Bicategory.structuralIso_inv, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, CategoryTheory.unop_rightUnitor, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, symm_self_conj, SheafOfModules.pullback_assoc, CategoryTheory.shiftEquiv'_unitIso, SheafOfModules.Presentation.of_isIso_relations, CategoryTheory.Functor.mapIso_symm, HomologicalComplexβ‚‚.flip_totalFlipIso, CategoryTheory.Endofunctor.Algebra.equivOfNatIso_unitIso, CategoryTheory.ShortComplex.LeftHomologyData.mapCyclesIso_eq, Mathlib.Tactic.Monoidal.naturality_inv, refl_symm, CategoryTheory.Functor.isoWhiskerRight_symm, CategoryTheory.MonoidalCategory.MonoidalRightAction.rightActionOfOppositeRightAction_actionAssocIso, CategoryTheory.Core.isoMk_inv_iso, CategoryTheory.Center.tensorObj_snd_Ξ², CategoryTheory.shiftComm_symm, CategoryTheory.DifferentialObject.isoApp_symm, CategoryTheory.Equivalence.symm_counitIso, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_app_fst_app, CategoryTheory.Bicategory.Prod.sectR_mapComp_hom, CategoryTheory.MonoidalCoherence.left'_iso, self_symm_conj, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, CategoryTheory.NatTrans.CommShift.of_iso_symm, CategoryTheory.Limits.IsColimit.equivIsoColimit_symm_apply, trans_symm, CategoryTheory.Idempotents.karoubiUniversal₁_unitIso, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Monoidal.InducingFunctorData.leftUnitor_eq, PresheafOfModules.pushforward_assoc, CategoryTheory.ShortComplex.LeftHomologyData.mapHomologyIso_eq, CategoryTheory.Functor.isoWhiskerRight_left, CategoryTheory.MonoidalCategory.endofunctorMonoidalCategory.evaluationRightAction_actionAssocIso, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, homCongr_symm, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_obj_map_snd_app, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionAssocIso_op, CategoryTheory.shiftFunctorComm_symm, CategoryTheory.shiftFunctorComm_eq, CategoryTheory.Equivalence.mapCommGrp_counitIso, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.unmop_associator, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_app_snd_app, CategoryTheory.Equivalence.unop_unitIso, CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso_inv_Ο„β‚‚, CategoryTheory.MonoidalCategory.whiskerRightIso_symm, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, CoalgEquiv.toCoalgIso_symm, CategoryTheory.Functor.commShiftIso_eq_ofInduced, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.Equivalence.op_unitIso, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionAssocIso, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_fst_app, coreWhiskerRight, CategoryTheory.FreeMonoidalCategory.normalizeIsoApp_tensor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, self_symm_id_assoc, symm_self_id_assoc, CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso_hom_τ₁, CategoryTheory.equivEssImageOfReflective_counitIso, CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso_hom_Ο„β‚‚, CategoryTheory.MonoidalCategory.whiskerLeftIso_symm, CategoryTheory.Equivalence.trans_unitIso, CategoryTheory.Bicategory.Prod.sectR_mapId_hom, CategoryTheory.op_associator, CategoryTheory.NatIso.unop_whiskerLeft, symm_bijective, CategoryTheory.Pseudofunctor.DescentData.pullFunctorEquivalence_unitIso, CategoryTheory.BicategoricalCoherence.assoc'_iso, CategoryTheory.Equivalence.op_counitIso, CategoryTheory.Pseudofunctor.isoMapOfCommSq_eq, CategoryTheory.Limits.CategoricalPullback.toCatCommSqOver_map_snd_app, CategoryTheory.leftDistributor_assoc, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.unop_associator, AlgebraicTopology.DoldKan.N₁Γ₀_app, CategoryTheory.Functor.commShiftUnop_commShiftIso, AlgebraicGeometry.Scheme.Pullback.Triplet.tensorCongr_symm, CategoryTheory.MonoidalCategory.MonoidalLeftAction.oppositeLeftAction_actionUnitIso, Bicategory.Opposite.op2_associator_hom, CategoryTheory.Pretriangulated.shortComplexOfDistTriangleIsoOfIso_inv_τ₃, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, coreWhiskerLeft, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, AlgebraicGeometry.Scheme.residueFieldCongr_symm, QuadraticModuleCat.ofIso_symm, CategoryTheory.Limits.widePushoutShapeOpEquiv_unitIso, CategoryTheory.GradedObject.comapEq_symm, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId, CategoryTheory.ShortComplex.RightHomologyData.mapHomologyIso'_eq, CategoryTheory.MonoidalCategory.MonoidalRightAction.oppositeRightAction_actionUnitIso, toIsometryEquiv_symm, CategoryTheory.ShortComplex.RightHomologyData.homologyIso_rightHomologyData, CategoryTheory.Functor.isoWhiskerLeft_symm, CategoryTheory.Functor.CoreMonoidal.ofOplaxMonoidal_ΞΌIso, CategoryTheory.Limits.widePullbackShapeOpEquiv_unitIso

CategoryTheory.Limits.Types.Pushout.Rel'

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CategoryTheory.Limits.Types.Pushout.Rel'β€”β€”β€”

CategoryTheory.MorphismProperty.LeftFractionRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CategoryTheory.MorphismProperty.LeftFractionRelβ€”β€”β€”

CategoryTheory.MorphismProperty.LeftFractionβ‚‚

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
1 mathmath: symm_add

CategoryTheory.MorphismProperty.RightFractionRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CategoryTheory.MorphismProperty.RightFractionRelβ€”β€”CategoryTheory.MorphismProperty.LeftFractionRel.unop
CategoryTheory.MorphismProperty.LeftFractionRel.symm
op

CategoryTheory.PresheafOfGroups.OneCohomologyRelation

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalCategoryTheory.PresheafOfGroups.OneCohomologyRelationCategoryTheory.PresheafOfGroups.ZeroCochain
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
CategoryTheory.PresheafOfGroups.instGroupZeroCochain
β€”RightCancelSemigroup.toIsRightCancelMul
mul_assoc
CategoryTheory.PresheafOfGroups.Cochainβ‚€.inv_apply
map_inv
MonoidHom.instMonoidHomClass
inv_mul_cancel_left
inv_mul_cancel
mul_one

CategoryTheory.ShortComplex.Homotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_hβ‚€, symm_h₃, symm_hβ‚‚, symm_h₁

CategoryTheory.ShortComplex.HomotopyEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_homotopyHomInvId, symm_homotopyInvHomId, symm_hom, symm_inv

CategoryTheory.Zag

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CategoryTheory.Zagβ€”β€”CategoryTheory.zag_symmetric

CategoryTheory.Zigzag

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CategoryTheory.Zigzagβ€”β€”CategoryTheory.zigzag_symmetric

CoalgEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
22 mathmath: ofCoalgHom_symm, CategoryTheory.Iso.toCoalgEquiv_symm, BialgEquiv.refl_symm_apply, toCoalgIso_inv, invFun_eq_symm, refl_symm_apply, coe_symm_toEquiv, coe_toEquiv_symm, BialgEquiv.symm_toCoalgEquiv, symm_toLinearEquiv, symm_toCoalgHom, coe_symm_toLinearEquiv, BialgEquiv.trans_symm_apply, CommBialgCat.bialgEquivOfIso_symm_apply, Coalgebra.TensorProduct.assoc_symm_tmul, trans_symm_apply, Coalgebra.TensorProduct.rid_symm_apply, symm_apply_apply, apply_symm_apply, toCoalgIso_symm, toEquiv_symm, Coalgebra.TensorProduct.lid_symm_apply

Codisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Codisjointβ€”β€”codisjoint_comm

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Commuteβ€”β€”β€”

CompRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CompRelβ€”β€”Relation.SymmGen.symm

ComplexShape

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
79 mathmath: HomologicalComplex.op_d, HomologicalComplex.opSymm_d, HomologicalComplex.unopFunctor_obj, HomologicalComplex.opcyclesOpIso_inv_naturality_assoc, Embedding.op_f, HomologicalComplex.instHasHomologyOppositeOp, symm_symm, HomologicalComplex.extend_op_d_assoc, HomologicalComplex.isStrictlySupportedOutside_op_iff, HomologicalComplex.unopInverse_map, HomologicalComplex.unopEquivalence_functor, Embedding.instIsRelIffOp, HomologicalComplex.opcyclesOpIso_inv_naturality, HomologicalComplex.extend.XOpIso_hom_d_op, HomologicalComplex.opEquivalence_unitIso, HomologicalComplex.extend.XOpIso_hom_d_op_assoc, HomologicalComplex.opFunctor_obj, HomologicalComplex.instQuasiIsoAtMapOppositeSymmUnopFunctorOp, HomologicalComplex.cyclesOpIso_inv_naturality_assoc, HomologicalComplex.Acyclic.op, HomologicalComplex.cyclesOpNatIso_inv_app, HomologicalComplex.instQuasiIsoMapOppositeSymmUnopFunctorOp, HomologicalComplex.opcyclesOpIso_hom_naturality_assoc, HomologicalComplex.quasiIsoAt_unopFunctor_map_iff, instHasNoLoopSymm, Embedding.instIsTruncLEOpOfIsTruncGE, HomologicalComplex.opcyclesOpIso_hom_toCycles_op, HomologicalComplex.unop_X, HomologicalComplex.opFunctor_map_f, HomologicalComplex.instQuasiIsoAtOppositeMapSymmOpFunctorOp, HomologicalComplex.isSupportedOutside_op_iff, HomologicalComplex.unopEquivalence_unitIso, HomologicalComplex.exactAt_op_iff, HomologicalComplex.opEquivalence_counitIso, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv_assoc, symm_Rel, HomologicalComplex.homologyOp_hom_naturality_assoc, HomologicalComplex.unopSymm_X, HomologicalComplex.cyclesOpIso_inv_naturality, HomologicalComplex.opcyclesOpIso_hom_naturality, HomologicalComplex.instHasHomologyOppositeObjSymmOpFunctorOp, HomologicalComplex.extend_op_d, HomologicalComplex.opInverse_obj, HomologicalComplex.unopSymm_d, HomologicalComplex.isStrictlySupported_op_iff, Embedding.op_boundaryLE_iff, HomologicalComplex.cyclesOpIso_hom_naturality_assoc, Embedding.op_boundaryGE_iff, HomologicalComplex.cyclesOpIso_hom_naturality, Embedding.instIsTruncGEOpOfIsTruncLE, HomologicalComplex.instHasHomologyUnopOfOpposite, HomologicalComplex.instQuasiIsoOppositeMapSymmOpFunctorOp, HomologicalComplex.isSupported_op_iff, HomologicalComplex.acyclic_op_iff, HomologicalComplex.ExactAt.op, HomologicalComplex.opEquivalence_functor, HomologicalComplex.op_X, HomologicalComplex.quasiIso_opFunctor_map_iff, HomologicalComplex.unopInverse_obj, HomologicalComplex.opEquivalence_inverse, HomologicalComplex.cyclesOpNatIso_hom_app, HomologicalComplex.fromOpcycles_op_cyclesOpIso_inv, symm_bijective, HomologicalComplex.quasiIso_unopFunctor_map_iff, HomologicalComplex.instIsStrictlySupportedOppositeOpOp, HomologicalComplex.unopEquivalence_inverse, HomologicalComplex.unop_d, HomologicalComplex.opFunctor_additive, HomologicalComplex.Acyclic.unop, HomologicalComplex.unopFunctor_map_f, HomologicalComplex.homologyOp_hom_naturality, HomologicalComplex.opcyclesOpIso_hom_toCycles_op_assoc, HomologicalComplex.quasiIsoAt_opFunctor_map_iff, HomologicalComplex.unopFunctor_additive, HomologicalComplex.unopEquivalence_counitIso, HomologicalComplex.opInverse_map, HomologicalComplex.ExactAt.unop, HomologicalComplex.opSymm_X, HomologicalComplex.instHasHomologyObjOppositeSymmUnopFunctorOp

ComplexShape.Embedding.AreComplementary

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ComplexShape.Embedding.AreComplementaryβ€”β€”disjoint
union

CompositionSeries.Equivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”CompositionSeries.Equivalentβ€”β€”JordanHolderLattice.iso_symm
Equiv.apply_symm_apply

Computation.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Computation.Equivβ€”β€”β€”

Computation.LiftRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalSymmetricComputation
Computation.LiftRel
β€”β€”

Con

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”DFunLike.coe
Con
instFunLikeForallProp
β€”β€”Setoid.symm'

Congruent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Congruentβ€”β€”β€”

ContinuousAddEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
23 mathmath: eq_comp_symm, symm_comp_eq, symm_bijective, symm_apply_eq, eq_symm_comp, symm_comp_self, self_trans_symm, AddEquiv.symm_toContinuousAddEquiv, self_comp_symm, symm_symm, invFun_eq_symm, eq_symm_apply, apply_eq_iff_symm_apply, symm_trans_self, MeasureTheory.addEquivAddHaarChar_symm, AddSubgroup.addSubgroupOfContinuousAddEquivOfLe_symm_apply, symm_apply_apply, comp_symm_eq, equivLike_neg_eq_symm, AddEquiv.toContinuousAddEquiv_symm_apply, apply_symm_apply, coe_toHomeomorph_symm, symm_trans_apply

ContinuousAffineEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
26 mathmath: image_symm_eq_preimage, symm_symm_apply, symm_apply_apply, symm_trans_self, toEquiv_symm, self_trans_symm, AffineIsometryEquiv.toContinuousAffineEquiv_symm, symm_apply_eq, preimage_symm, apply_symm_apply, apply_eq_iff_eq_symm_apply, refl_symm, prodCongr_symm, coe_symm_toEquiv, image_eq_preimage_symm, symm_symm, prodComm_symm, toAffineEquiv_symm, AffineIsometryEquiv.coe_symm_toContinuousAffineEquiv, coe_symm_toAffineEquiv, image_symm, symm_refl, symm_bijective, symm_image_image, image_symm_image, eq_symm_apply

ContinuousAlgEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
28 mathmath: symm_apply_eq, symm_bijective, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, toContinuousLinearEquiv_symm, symm_trans_apply, symm_map_nhds_eq, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, refl_symm, cast_symm_apply, symm_comp_self, image_eq_preimage_symm, symm_symm_apply, symm_apply_apply, coe_comp_coe_symm, symm_image_image, eq_symm_apply, symm_toAlgEquiv, image_symm_eq_preimage, self_comp_symm, preimage_symm_preimage, apply_symm_apply, image_symm_image, ContinuousLinearEquiv.symm_conjContinuousAlgEquiv, symm_symm, symm_toHomeomorph, symm_preimage_preimage, coe_symm_comp_coe, ContinuousLinearEquiv.symm_conjContinuousAlgEquiv_apply_apply

ContinuousLinearEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
181 mathmath: Pi.comul_eq_adjoint, preimage_symm_preimage, antilipschitz, PiLp.continuousLinearEquiv_symm_apply, StarModule.decomposeProdAdjointL_symm_apply, symm_preimage_preimage, symm_neg, toLinearEquiv_symm, toCompactConvergenceCLM_symm_apply, Matrix.l2_opNorm_mulVec, HasFDerivWithinAt.of_local_left_inverse, OpenPartialHomeomorph.hasStrictFDerivAt_symm, symm_toDiffeomorph, subsingleton_or_norm_symm_pos, coe_toSpanNonzeroSingleton_symm, NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, coe_comp_coe_symm, mdifferentiableOn_symm_coordChangeL, coe_toDiffeomorph_symm, prodProdProdComm_symm, WithLp.prodContinuousLinearEquiv_symm_apply, LinearEquiv.toLinearEquiv_toContinuousLinearEquiv_symm, apply_symm_apply, contDiffAt_comp_iff, ContinuousAlgEquiv.toContinuousLinearEquiv_symm, symm_trans_apply, Euclidean.closedBall_eq_image, MeasureTheory.charFunDual_pi', continuousAlternatingMapCongrLeftEquiv_apply, Pi.counit_eq_adjoint, conjContinuousAlgEquiv_apply, SchwartzMap.smulLeftCLM_compCLMOfContinuousLinearEquiv, ContinuousLinearMap.inverse_equiv, piUnique_symm_apply, uniqueProd_symm_apply, VectorField.pullbackWithin_eq_of_fderivWithin_eq, finTwoArrow_symm_apply, one_le_norm_mul_norm_symm, Trivialization.comp_continuousLinearEquivAt_eq_coord_change, arrowCongr_apply, Complex.equivRealProdCLM_symm_apply, prodCongr_symm, Trivialization.symm_apply_eq_mk_continuousLinearEquivAt_symm, HasStrictFDerivAt.of_local_left_inverse, PiLp.hasFDerivAt_toLp, LinearEquiv.coe_toContinuousLinearEquiv_symm, Matrix.l2_opNNNorm_mulVec, arrowCongr_symm, symm_smul_apply, ContinuousLinearMap.equivRange_symm_apply, coe_symm_comp_coe, eq_toContinuousLinearMap_symm_comp, Module.Basis.equivFunL_symm_apply_repr, MulOpposite.opContinuousLinearEquiv_symm_apply, Submodule.coe_orthogonalDecomposition, PointwiseConvergenceCLM.equivWeakDual_symm_apply, WithLp.prodContinuousLinearEquiv_symm_apply_ofLp, HasFDerivAt.of_local_left_inverse, continuousAlternatingMapCongrRight_symm, LinearEquiv.coe_toContinuousLinearEquiv_symm', LinearIsometryEquiv.toContinuousLinearEquiv_symm, symm_smul, eq_comp_toContinuousLinearMap_symm, hasSum, comp_hasFDerivWithinAt_iff', ProbabilityTheory.indepFun_iff_charFunDual_prod', starL_symm_apply, toSpanNonzeroSingleton_symm_apply, contMDiffOn_symm_coordChangeL, Trivialization.symm_coordChangeL, LinearEquiv.extend_symm_apply, symm_bijective, norm_symm_pos, continuousMultilinearMapCongrRight_symm, subsingleton_or_nnnorm_symm_pos, LinearEquiv.extend_symm_eq, prodUnique_symm_apply, refl_symm, SchwartzMap.fourierTransformCLE_symm_apply, starL'_symm_apply, coe_symm_toHomeomorph, comp_right_hasFDerivWithinAt_iff', unitsEquivAut_apply_symm, symm_comp_self, NumberField.mixedEmbedding.negAt_symm, FormalMultilinearSeries.leftInv_coeff_one, image_eq_preimage_symm, ModelWithCorners.coe_extChartAt_transContinuousLinearEquiv_symm, contDiffWithinAt_comp_iff, self_comp_symm, image_symm_eq_preimage, Module.Basis.parallelepiped_eq_map, det_coe_symm, Trivialization.coordChangeL_symm_apply, rightInverse_hasRightInverse, prodComm_symm, comp_hasFDerivAt_iff', HasStrictFDerivAt.approximates_deriv_on_open_nhds, continuousAlternatingMapCongrLeft_apply, symm_symm_apply, Trivialization.continuousLinearEquivAt_symm_apply, LinearIsometryEquiv.coe_symm_toContinuousLinearEquiv, LinearEquiv.norm_extend_symm_le, ContinuousLinearMap.inverse_comp_equiv, ContinuousLinearMap.inCoordinates_eq, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', HasStrictFDerivAt.to_localInverse, symm_image_image, MeasureTheory.Measure.addHaar_preimage_continuousLinearEquiv, arrowCongrEquiv_symm_apply, leftInverse_hasLeftInverse, eq_symm_apply, arrowCongrSL_apply, submoduleMap_symm_apply, MeasureTheory.charFunDual_prod', skewProd_symm_apply, Shrink.continuousLinearEquiv_symm_apply, Trivialization.symm_continuousLinearEquivAt_eq, tsum_eq_iff, arrowCongrEquiv_apply, Complex.equivRealProdCLM_symm_apply_re, MeasureTheory.charFunDual_eq_pi_iff', toHomeomorph_symm, ContinuousLinearMap.inverse_equiv_comp, FourierTransform.fourierCLE_symm_apply, FormalMultilinearSeries.radius_compContinuousLinearMap_le, symm_trans_self, ContinuousLinearMap.inverse_eq_ringInverse, symm_equivOfInverse, ofBijective_symm_apply_apply, Submodule.ClosedComplemented.exists_submodule_equiv_prod, Module.Basis.ofZLatticeBasis_comap, ofSubmodule'_symm_apply, symm_symm, HasStrictFDerivAt.to_local_left_inverse, VectorField.pullback_eq_of_fderiv_eq, ContinuousLinearMap.coe_symm_flipMultilinearEquiv, PiLp.coe_symm_continuousLinearEquiv, continuousAlternatingMapCongr_apply, symm_equivOfInverse', Complex.equivRealProdCLM_symm_apply_im, FormalMultilinearSeries.radius_rightInv_pos_of_radius_pos_aux2, nnnorm_symm_pos, symm_apply_apply, WithCStarModule.equivL_symm_apply, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, arrowCongrSL_symm_apply, continuousMultilinearMapCongrLeft_symm, symm_conjContinuousAlgEquiv, ModelWithCorners.coe_transContinuousLinearEquiv_symm, self_trans_symm, symm_apply_eq, LinearEquiv.coeFn_toContinuousLinearEquivOfContinuous_symm, comp_right_hasFDerivAt_iff', exists_continuousLinearEquiv_fderiv_symm_eq, FormalMultilinearSeries.rightInv_coeff, image_symm_image, arrowCongrSL_toLinearEquiv_apply, exists_continuousLinearEquiv_fderivWithin_symm_eq, FormalMultilinearSeries.rightInv_coeff_one, prodAssoc_symm_apply, ContinuousLinearMap.toSpanSingletonCLE_symm_apply, symm_map_nhds_eq, OpenPartialHomeomorph.hasFDerivAt_symm, MeasureTheory.charFunDual_eq_prod_iff', equivOfRightInverse_symm_apply, Fin.consEquivL_symm_apply, arrowCongrSL_toLinearEquiv_symm_apply, piCongrRight_symm_apply, conjContinuousAlgEquiv_apply_apply, ContinuousLinearMap.coprodEquivL_symm_apply, coe_funUnique_symm, mem_contMDiffFiberwiseLinear_iff, piFinTwo_symm_apply, coe_symm_toLinearEquiv, symm_conjContinuousAlgEquiv_apply_apply, Submodule.coe_prodEquivOfClosedCompl_symm, ModelWithCorners.extChartAt_transContinuousLinearEquiv_target, ofBijective_apply_symm_apply, ofSubmodules_symm_apply, PiLp.hasStrictFDerivAt_toLp

ContinuousMap.Homotopic

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”ContinuousMap.Homotopicβ€”Nonempty.map

ContinuousMap.HomotopicRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”ContinuousMap.HomotopicRelβ€”Nonempty.map

ContinuousMap.HomotopicWith

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”ContinuousMap.HomotopicWithβ€”β€”

ContinuousMap.Homotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_trans, symm_symm, symm_bijective, symm_apply

ContinuousMap.HomotopyEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
5 mathmath: refl_symm_apply, Homeomorph.symm_toHomotopyEquiv, coe_invFun, symm_trans, trans_symm_apply

ContinuousMap.HomotopyRel

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_bijective, symm_apply, symm_trans, symm_symm

ContinuousMap.HomotopyWith

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_bijective, symm_trans, symm_symm, symm_apply

ContinuousMulEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
25 mathmath: symm_trans_self, MulEquiv.toContinuousMulEquiv_symm_apply, MeasureTheory.mulEquivHaarChar_symm, eq_comp_symm, symm_apply_eq, symm_comp_self, eq_symm_apply, symm_bijective, ContAction.resEquiv_inverse, eq_symm_comp, symm_trans_apply, invFun_eq_symm, Units.symm_mapContinuousMulEquiv, symm_apply_apply, apply_symm_apply, MulEquiv.symm_toContinuousMulEquiv, self_trans_symm, self_comp_symm, Subgroup.subgroupOfContinuousMulEquivOfLe_symm_apply, equivLike_inv_eq_symm, symm_comp_eq, coe_toHomeomorph_symm, apply_eq_iff_symm_apply, symm_symm, comp_symm_eq

CurveIntegrable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalCurveIntegrablePath.symm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”curveIntegralFun_symm
sub_self
sub_zero
IntervalIntegrable.symm
IntervalIntegrable.neg
IntervalIntegrable.comp_sub_left
enorm_ne_top

Diffeomorph

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
23 mathmath: symm_refl, contMDiffOn_comp_diffeomorph_iff, symm_trans', ContinuousLinearEquiv.symm_toDiffeomorph, ContinuousLinearEquiv.coe_toDiffeomorph_symm, apply_symm_apply, sumCongr_symm_symm, image_eq_preimage_symm, range_comp, prodCongr_symm, symm_apply_apply, symm_image_image, symm_toEquiv, contMDiffWithinAt_comp_diffeomorph_iff, self_trans_symm, symm_image_eq_preimage, symm_toHomeomorph, prodComm_symm, symm_trans_self, toEquiv_coe_symm, image_symm_image, sumComm_symm, coe_toHomeomorph_symm

DilationEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
17 mathmath: smulTorsor_symm_apply, IsometryEquiv.toDilationEquiv_symm, coe_symm_toHomeomorph, symm_bijective, refl_symm, mulRight_symm_apply, symm_apply_apply, mulLeft_symm_apply, toHomeomorph_symm, apply_symm_apply, self_trans_symm, symm_trans_self, IsometryEquiv.coe_symm_toDilationEquiv, inv_def, coe_inv, ratio_symm, symm_symm

DiscreteQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”toSetoidβ€”β€”Setoid.symm'

Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Disjointβ€”β€”disjoint_comm

ENNReal.HolderConjugate

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”ENNReal.HolderConjugateβ€”ENNReal.HolderTriple.symm

ENNReal.HolderTriple

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”ENNReal.HolderTripleβ€”inv_add_inv_eq_inv
add_comm

Equidecomp

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
7 mathmath: map_target, restr_refl_symm, symm_involutive, symm_symm, symm_bijective, symm_toPartialEquiv, refl_symm

Equiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
2108 mathmath: Perm.decomposeFin_symm_of_refl, sumEmpty_symm_apply, MultilinearMap.domDomCongrLinearEquiv'_symm_apply, toColex_symm_eq, SSet.op_Ξ΄, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', FreeAddMonoid.lift_symm_apply, AffineEquiv.coe_symm_toEquiv, CategoryTheory.Adjunction.adjunctionOfEquivLeft_counit_app, DomMulAct.smul_monoidHom_apply, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', CategoryTheory.Quiv.equivOfIso_symm_apply, CategoryTheory.nerve.edgeMk_edge, sumAssoc_symm_apply_inl, CategoryTheory.TwoSquare.equivNatTrans_symm_apply, unitsEquivNeZero_symm_apply, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, FreeMonoid.map_apply_map_symm_eq, invFun_as_coe, CategoryTheory.mateEquiv_counit_symm, HahnModule.support_smul_subset_vadd_support', PEquiv.vecMul_toMatrix_toPEquiv, CategoryTheory.Limits.IsLimit.ofConeEquiv_symm_apply_desc, CategoryTheory.coyonedaEquiv_symm_app_apply, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerLeft, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm, CategoryTheory.Sheaf.Ξ“HomEquiv_naturality_left_symm, FirstOrder.Language.LEquiv.onTerm_symm_apply, PiTensorProduct.lift_reindex, AddSubgroup.quotientEquivProdOfLE_symm_apply, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three_assoc, PerfectionMap.lift_symm_apply, QuaternionAlgebra.coe_linearEquivTuple_symm, Metric.Snowflaking.symm_ofSnowflaking, sigmaAssocProd_apply_fst, Matrix.transposeInvertibleEquivInvertible_symm_apply, CategoryTheory.Arrow.equivSigma_symm_apply_left, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, DFA.reindex_apply_accept, InfTopHom.symm_dual_id, CategoryTheory.Limits.Types.Small.productIso_hom_comp_eval, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, IndexedPartition.proj_fiber, List.equivSigmaTuple_symm_apply, IntermediateField.algHomEquivAlgHomOfSplits_symm_apply, Nat.Primes.prodNatEquiv_symm_apply, RootPairing.reflectionPerm_symm, uniqueProd_symm_apply, WithZero.logEquiv_symm, LinearEquiv.extendScalarsOfIsLocalizationEquiv_symm_apply, Submonoid.equivOp_symm_apply_coe, CategoryTheory.Limits.Types.Small.productIso_hom_comp_eval_apply, inv_def, CategoryTheory.Localization.Preadditive.homEquiv_symm_apply, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply, FundamentalGroupoid.equiv_symm_apply_as, CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ξ©β‚€, val_inv_unitsEquivProdSubtype_symm_apply, MeasureTheory.ComplexMeasure.equivSignedMeasure_symm_apply, Set.union_symm_apply_left, PrimeSpectrum.preimageEquivFiber_symm_apply_coe, Topology.IsGeneratedBy.homeomorph_symm_coe, LightCondensed.ihomPoints_apply, sumCompl_symm_apply_pos, optionIsSomeEquiv_symm_apply_coe, coe_constVSub_symm, nsmul_finEquivZMultiples_symm_apply, Topology.WithLower.ofLower_symm, PartENat.withTopEquiv_symm_apply, CategoryTheory.Functor.curryingEquiv_symm_apply_obj_obj, AlgebraicGeometry.coprodSpec_apply, Polynomial.Gal.smul_def, MvPolynomial.comapEquiv_symm_coe, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, MulArchimedeanOrder.val_symm_eq, Quiver.starEquivCostar_symm_apply_fst, SSet.ΞΉβ‚€_snd_assoc, symm_preimage_preimage, Function.Involutive.toPerm_symm, Combinatorics.Subspace.IsMono.reindex, CategoryTheory.ReflQuiv.adj.homEquiv_symm_apply, CategoryTheory.Iso.isoCongr_symm_apply, CategoryTheory.ExponentiableMorphism.homEquiv_symm_apply_eq, CategoryTheory.FunctorToTypes.functorHomEquiv_symm_apply_app_app, CategoryTheory.iterated_mateEquiv_conjugateEquiv_symm, AddEquiv.addSubgroupMap_symm_apply, CategoryTheory.CountableCategory.instObjAsType, CategoryTheory.MonoidalClosed.enrichedOrdinaryCategorySelf_homEquiv_symm, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, contDiff_prodAssoc_symm, MeasureTheory.integral_domSMul, SupBotHom.symm_dual_comp, finEquivZPowers_symm_apply, CategoryTheory.shrinkYonedaEquiv_symm_map_assoc, TopHom.symm_dual_id, neg_def, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_app_apply, PiTensorProduct.lift_reindex_symm, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv, Multiset.cast_symm_apply_fst, sSupHom.symm_dual_id, ExteriorAlgebra.lift_symm_apply, PiTensorProduct.map_reindex_symm, DFinsupp.equivFunOnFintype_symm_coe, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, CategoryTheory.FunctorToTypes.shrinkMap_app, CategoryTheory.Quiv.homEquivOfIso_symm_apply, HahnModule.coeff_single_smul_vadd, InfHom.symm_dual_comp, boolArrowEquivProd_symm_apply, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply', DirectSum.decomposeAlgEquiv_symm_apply, CompleteLatticeHom.dual_symm_apply_toFun, piCongrLeft_apply, Finset.map_filter, PrimeSpectrum.primeSpectrumProd_symm_inl, AddMagma.FreeAddSemigroup.lift_symm_apply, NumberField.IsCMField.equivInfinitePlace_symm_apply, Subgroup.equivOp_symm_apply_coe, CategoryTheory.Bicategory.Adjunction.homEquivβ‚‚_symm_apply, Quaternion.imK_equivProd_symm_apply, OrderAddMonoidIso.toEquiv_symm, CategoryTheory.Functor.CorepresentableBy.equivOfIsoObj_symm_apply, PiTensorProduct.reindex_reindex, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_Ο†, piOptionEquivProd_symm_apply, LightCondensed.ihomPoints_symm_comp, WithZero.lift'_symm_apply_apply, Function.fromTypes_cons_equiv_symm_apply, WithTop.ofDual_symm, Polynomial.sylvester_comm, apply_symm_apply, CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def, piSplitAt_symm_apply, SSet.stdSimplex.objβ‚€Equiv_symm_apply, tangentMap_chart, DomMulAct.symm_mk_pow, DomMulAct.smul_linearMap_apply, restrictPreimageFinset_symm_apply_coe, toDegLex_symm_eq, OrderIso.symm_mk, ofLex_symm_eq, OrderMonoidIso.withZero_symm_apply_symm_apply, SimpleGraph.walkLengthTwoEquivCommonNeighbors_symm_apply_coe, equivShrink_symm_div, CategoryTheory.conjugateEquiv_symm_id, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_right_symm, CategoryTheory.Bicategory.conjugateEquiv_adjunction_id_symm, piCongrSigmaFiber_symm_apply, OrderMonoidIso.withZero_symm_apply_apply, DomAddAct.map_mk_symm_nhds, CategoryTheory.nerve.functorOfNerveMap_map, StandardEtalePair.homEquiv_symm_apply, SSet.opFunctorCompOpFunctorIso_inv_app_app, sumComm_symm, arrowCongr'_symm, CategoryTheory.Adjunction.adjunctionOfEquivRight_counit_app, MulEquiv.symm_mk, arrowCongr'_apply, OrderDual.toDual_symm_eq, PreQuasiregular.equiv_symm_apply, CategoryTheory.Limits.biproduct.whiskerEquiv_inv, MulHom.op_symm_apply_apply, FreeAddGroup.freeAddGroupCongr_symm, CategoryTheory.Limits.FormalCoproduct.isoOfComponents_inv_Ο†, Matrix.submatrix_vecMul_equiv, TwoSidedIdeal.equivMatrix_symm_apply_ringCon, RelIso.relHomCongr_symm_apply, Perm.perm_symm_on_of_perm_on_finset, divRight_symm_apply, PresheafOfModules.homEquivOfIsLocallyBijective_symm_apply, Additive.toMul_symm_eq, DomMulAct.coe_mkHomeomorph_symm, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, equivShrink_symm_sub, CategoryTheory.ShiftedHom.opEquiv_symm_add, sigmaPreimageEquiv_symm_apply_snd_coe, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm_assoc, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, AddConstMap.conjNeg_symm, CategoryTheory.Limits.Types.isColimit_iff_coconeTypesIsColimit, VertexOperator.of_coeff_apply_coeff, DomMulAct.smul_mulDistribActionHom_apply, IndexedPartition.equivQuotient_symm_proj_apply, MeasureTheory.Measure.domSMul_apply, CategoryTheory.Limits.opCompYonedaSectionsEquiv_symm_apply_coe, Finset.Nat.sigmaAntidiagonalTupleEquivTuple_symm_apply_snd_coe, RelIso.coe_fn_symm_mk, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, coe_fn_symm_mk, CategoryTheory.Limits.WalkingPair.equivBool_symm_apply_true, CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap, genericPoints.equiv_symm_apply, Quiver.SingleObj.toPrefunctor_symm_id, BoundedOrderHom.symm_dual_id, SSet.S.equivElements_symm_apply_dim, pointReflection_symm, CategoryTheory.Limits.MulticospanIndex.sectionsEquiv_symm_apply_val, sigmaAssocProd_apply_snd_snd, ofDegLex_symm_eq, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, toHomeomorphOfIsInducing_symm_apply, AddMonoidAlgebra.mapDomainAddEquiv_apply, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, permCongr_symm_apply, Pi.single_comp_equiv, MultilinearMap.domDomCongrEquiv_symm_apply, Orientation.map_symm, WithCStarModule.equiv_symm_snd, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_id, CategoryTheory.tensorRightHomEquiv_symm_naturality, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, PrimeSpectrum.primeSpectrumProd_symm_inr_asIdeal, Perm.subtypeCongr.symm, Matrix.kroneckerTMul_assoc', DomMulAct.mem_stabilizer_iff, CategoryTheory.conjugateEquiv_symm_comp_assoc, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, CategoryTheory.Subfunctor.ofSection_eq_range, symm_comp_self, SimpleGraph.Iso.connectedComponentEquiv_symm_apply, exists_congr_left, CategoryTheory.Localization.SmallHom.equiv_equiv_symm, CommRing.Pic.mul_eq_tensor, Perm.symm_mul, finsuppUnique_symm_apply_support_val, Multiset.Icc_eq, zpowersHom_symm_apply, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_infinity, Sequential.isoEquivHomeo_symm_apply, optionProdEquiv_symm_inr, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one, Set.rangeInl_symm_apply_coe, CategoryTheory.ForgetEnrichment.equivFunctor_map, HVertexOperator.coeff_isPWOsupport, contMDiff_equivTangentBundleProd_symm, finSuccEquiv_symm_none, InfTopHom.symm_dual_comp, SheafOfModules.unitHomEquiv_symm_comp, Matrix.mul_val_succ, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp, uliftMultiplesHom_symm_apply, Algebra.PreSubmersivePresentation.jacobiMatrix_reindex, FirstOrder.Language.Term.constantsVarsEquiv_symm_apply, DirectSum.lequivCongrLeft_apply, prodPiEquivSumPi_apply, CategoryTheory.Functor.Final.colimitCoconeOfComp_isColimit, CategoryTheory.Functor.equivCatHom_symm_apply, Flag.symm_map, NonUnitalStarAlgHom.prodEquiv_symm_apply, DomMulAct.smul_addMonoidHom_apply, Finset.map_consEquiv_filter_piFinset, RootPairing.Hom.comp_indexEquiv_symm_apply, FreeAddSemigroup.lift_symm_apply, Affine.Simplex.excenterWeightsUnnorm_reindex, CategoryTheory.InjectiveResolution.of_def, Perm.sumCongr_symm, piCongrRight_symm_apply, CategoryTheory.Coyoneda.objOpOp_inv_app, CategoryTheory.GradedObject.comapEquiv_counitIso, sigmaCongrRight_symm, CategoryTheory.Subobject.wideCospan_map_term, RingEquiv.piCongrLeft_symm_apply, traverse_def, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, Finset.Nat.antidiagonalEquivFin_symm_apply_coe, subtypeEquivCodomain_symm_apply, left_inv', sumSigmaDistrib_symm_apply, MonoidHom.toHomPerm_apply_symm_apply, sigmaPUnit_symm_apply_snd, Finset.Nat.sigmaAntidiagonalTupleEquivTuple_symm_apply_fst, optionEquivSumPUnit_symm_inr, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, CategoryTheory.WithInitial.isColimitEquiv_symm_apply_desc, eq_symm_comp, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_symm_apply, RingEquiv.piCongrLeft'_symm, CategoryTheory.Limits.SingleObj.Types.colimitEquivQuotient_symm_apply, RingEquiv.piCongrLeft'_apply, Subsemigroup.equivOp_symm_apply_coe, CategoryTheory.Pi.equivalenceOfEquiv_counitIso, PresheafOfModules.freeYonedaEquiv_symm_app, CategoryTheory.Limits.biproduct.matrixEquiv_symm_apply, piCongrLeft_symm_apply, Finset.map_snocEquiv_filter_piFinset, Homeomorph.coe_symm_toEquiv, IsometryEquiv.piCongrLeft'_apply, Perm.sign_trans_trans_symm, CategoryTheory.FinCategory.categoryAsType_comp, SetTheory.PGame.relabel_moveRight, FirstOrder.Language.Term.constantsVarsEquivLeft_apply, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Bicategory.conjugateEquiv_symm_id, uliftZPowersHom_symm_apply, divLeft_symm_apply, Unitization.starLift_symm_apply_apply, AlgebraicGeometry.Scheme.Hom.irreducibleComponentsEquiv_symm_apply_coe, ofBijective_apply_symm_apply, CategoryTheory.Adjunction.eq_homEquiv_apply, isRight_finSumNatEquiv_symm_apply, MonoidHom.fiberEquivKer_symm_apply, arrowCongr_apply, LinearEquiv.coe_symm_toEquiv, CategoryTheory.MonObj.ofRepresentableBy_one, Perm.sum_comp', Set.BijOn.equiv_symm, CategoryTheory.Limits.Concrete.productEquiv_symm_apply_Ο€, Function.FromTypes.curry_two_eq_curry, mapMatrix_symm, CategoryTheory.FinCategory.asTypeToObjAsType_map, MonoidAlgebra.opRingEquiv_symm_apply, Matrix.updateCol_reindex, DomMulAct.map_mk_symm_nhds, transPartialEquiv_symm_apply, DomMulAct.comap_mk_nhds, CategoryTheory.Iso.homFromEquiv_symm_apply, SheafOfModules.unitHomEquiv_symm_freeHomEquiv_apply, prodUnique_symm_apply, Perm.sameCycle_inv_apply_left, CategoryTheory.uliftYonedaEquiv_symm_apply_app, AddMonoidHom.fiberEquiv_symm_apply, ofLeftInverse_symm_apply, symm_apply_apply, Filter.tendsto_prodAssoc_symm, Perm.sign_symm, ContinuousMap.piEquiv_symm_apply, CategoryTheory.conjugateEquiv_symm_apply_app, coe_equiv_lpPiLp_symm, MonoidAlgebra.symm_mapDomainAddEquiv, AlgEquiv.symm_toEquiv_eq_symm, BoundedLatticeHom.symm_dual_comp, finCongr_symm_apply_coe, Perm.SameCycle.symm_apply_right, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp, MonoidAlgebra.lift_symm_apply, Multiset.consEquiv_symm_some, DirectSum.decompose_symm_sub, DomAddAct.isOpenEmbedding_mk_symm, Function.Embedding.equiv_toEmbedding_trans_symm_toEmbedding, AlgebraicGeometry.AffineSpace.homOverEquiv_symm_apply_coe, Matrix.submatrix_single_equiv, sigmaFinsuppAddEquivDFinsupp_symm_apply, TotallyDisconnectedSpace.continuousMapEquivOfConnectedSpace_symm_apply_apply, optionSubtype_symm_apply_apply_coe, Perm.perm_inv_on_of_perm_on_finite, Affine.Simplex.excenterExists_reindex, sigmaAssocProd_apply_snd_fst, Quaternion.re_equivProd_symm_apply, AddMonoidAlgebra.opRingEquiv_symm_apply, Finset.map_symm_subset, WithCStarModule.equiv_symm_neg, LatticeHom.dual_symm_apply_toFun, Set.insert_symm_apply_inr, ContinuousAffineEquiv.toEquiv_symm, PartialEquiv.transEquiv_symm_apply, HahnSeries.SummableFamily.hsum_smul_module, Perm.decomposeFin_symm_apply_one, Submodule.coe_isComplEquivProj_symm_apply, Set.powersetCard.compl_symm, LieAlgebra.bracket_ofTwoCocycle, SheafOfModules.GeneratingSections.epi, mulLeftβ‚€_symm_apply, MonoidHom.toAdditive_symm_apply_apply, symm_subLeft, CategoryTheory.Functor.partialRightAdjointHomEquiv_comp_symm_assoc, Matrix.updateRow_submatrix_equiv, PartialFun.Iso.mk_inv, AddAction.orbitZMultiplesEquiv_symm_apply', Complex.equivRealProd_symm_apply, toOrderIsoSet_symm_apply, Sym.coe_equivNatSum_symm_apply, sigmaAntidiagonalEquivProd_symm_apply_snd, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range', Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, sumPiEquivProdPi_symm_apply, leftInverse_symm, SSet.nonDegenerateEquivOfIso_symm_apply_coe, CategoryTheory.Subobject.symm_apply_mem_iff_mem_image, OrderAddMonoidIso.coe_toEquiv_symm, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, CategoryTheory.nerve.edgeMk_id, FirstOrder.Ring.lift_genericPolyMap, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_symm_apply_Ο†, OrthonormalBasis.coe_reindex, SimpleGraph.Iso.map_symm_apply, AddAction.orbitZMultiplesEquiv_symm_apply, equivCongr_apply_apply, ContinuousAlternatingMap.ofSubsingletonLIE_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, sigmaSumDistrib_symm_apply, HahnSeries.SummableFamily.Equiv_toFun, CategoryTheory.Presieve.FamilyOfElements.singletonEquiv_symm_apply_self, AffineBasis.coord_reindex, Set.coe_biUnionEqSigmaOfDisjoint_symm_apply, powersHom_symm_apply, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_symm_apply, Matrix.mul_reindexLinearEquiv_one, Set.univ_symm_apply, MeasureTheory.LevyProkhorov.toMeasureEquiv_symm_apply_toMeasure, AddEquiv.symmEquiv_symm_apply_symm_apply, AddChar.toMonoidHomEquiv_symm_apply, SupHom.symm_dual_comp, CategoryTheory.Functor.curryingFlipEquiv_symm_apply_map_app, coe_ofInjective_symm, CategoryTheory.PreZeroHypercover.interLift_hβ‚€, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.uliftCoyonedaEquiv_symm_apply_app, LieAlgebra.Orthogonal.indefiniteDiagonal_assoc, toPartialEquiv_symm_apply, FirstOrder.Field.lift_genericMonicPoly, CategoryTheory.Functor.representableByUliftFunctorEquiv_symm_apply_homEquiv, Function.piCongrLeft'_symm_update, symm_symm_apply, CategoryTheory.Discrete.equivalence_unitIso, Fin.castLEquiv_symm_apply, Matrix.coe_ofAddEquiv_symm, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, add_def, PiTensorProduct.reindex_comp_tprod, equivShrink_symm_bot, Function.OfArity.curryEquiv_symm_apply, SSet.opFunctor_map, pow_finEquivZPowers_symm_apply, Perm.perm_inv_mapsTo_of_mapsTo, Normal.algHomEquivAut_symm_apply, Homeomorph.continuousMapCongr_symm_apply, CategoryTheory.FunctorToTypes.binaryCoproductEquiv_symm_apply, Unitization.lift_symm_apply_apply, CategoryTheory.Bicategory.Adj.Homβ‚‚.conjugateEquiv_symm_Ο„r, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_map, powCoprime_symm_apply, SSet.Subcomplex.ofSimplexProd_eq_range, CategoryTheory.nerve.homEquiv_edgeMk, FormalMultilinearSeries.changeOriginIndexEquiv_symm_apply_fst, CategoryTheory.Functor.homObjEquiv_symm_apply_app, HahnSeries.SummableFamily.smul_apply, CategoryTheory.Adjunction.mkOfHomEquiv_counit_app, MultilinearMap.curryFinFinset_apply, Module.Basis.map_equiv, Fin.revPerm_symm, RootPairing.Equiv.inv_indexEquiv, Set.congr_symm_apply, CategoryTheory.Functor.RepresentableBy.comp_homEquiv_symm, Matrix.uniqueEquiv_symm_apply, HomotopicalAlgebra.leftHomotopyClassEquivRightHomotopyClass_symm_mk, AlgEquiv.equivCongr_symm, SetTheory.PGame.toRightMovesNim_one_symm, divRightβ‚€_symm_apply, Perm.decomposeFin.symm_sign, Sym.coe_equivNatSumOfFintype_symm_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm, SSet.op_Οƒ, Module.Relations.Solution.IsPresentation.linearMapEquiv_symm_apply, uliftPowersHom_symm_apply, CategoryTheory.Functor.Initial.limitConeComp_isLimit, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, CategoryTheory.Functor.FullyFaithful.homEquiv_symm_apply, equivPUnit_symm_apply, equivCongr_refl_right, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_fst, CategoryTheory.Bicategory.mateEquiv_symm_apply', CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, punitProd_symm_apply, EisensteinSeries.gammaSetDivGcdSigmaEquiv_symm_eq, Module.Ray.map_symm, Perm.extendDomain_apply_subtype, sigmaSigmaSubtype_symm_apply, AlgHom.opComm_symm_apply_apply, Homeomorph.sumProdDistrib_symm_apply, Topology.IsQuotientMap.liftEquiv_symm_apply_coe, DomMulAct.isInducing_mk_symm, QuaternionAlgebra.equivTuple_symm_apply, inv_symm, Delone.DeloneSet.mapIsometry_symm_apply_carrier, AffineBasis.coe_reindex, sub_def, forall_congr_left, funSplitAt_symm_apply, AddMonoidHom.toMultiplicativeRight_symm_apply_apply, Topology.WithUpperSet.toUpperSet_symm, CategoryTheory.nerve.nonempty_compStruct_iff, FormalMultilinearSeries.changeOriginIndexEquiv_symm_apply_snd_snd_coe, CategoryTheory.Limits.Types.Small.productIso_inv_comp_Ο€, Finset.Nat.antidiagonalTuple_two, CategoryTheory.uliftYonedaEquiv_symm_map, TopHom.dual_symm_apply_apply, FreeAbelianGroup.liftAddEquiv_symm_apply, Finsupp.mapRange.equiv_symm, MulArchimedeanOrder.of_symm_eq, OrderIso.coe_symm_toEquiv, normalizedFactorsEquivOfQuotEquiv_symm, finRotate_succ_eq_decomposeFin, subtypeOrEquiv_symm_inl, withBotSubtypeNe_symm_apply_coe, CompHausLike.isoEquivHomeo_symm_apply, TrivSqZeroExt.invertibleEquivInvertibleFst_symm_apply_invOf, AlgEquiv.sumArrowEquivProdArrow_symm_apply_inr, optionSubtypeNe_symm_of_ne, Bundle.TotalSpace.toProd_symm_apply_proj, gelfandStarTransform_symm_apply, FintypeCat.equivEquivIso_symm_apply_symm_apply, CategoryTheory.FinCategory.categoryAsType_id, finSumNatEquiv_symm_apply_fin, AffineEquiv.toEquiv_symm, CategoryTheory.Functor.Final.colimitCoconeComp_isColimit, coe_subtypeEquivCodomain_symm, Perm.sameCycle_symm_apply_right, DomAddAct.continuous_mk_symm, CategoryTheory.Limits.IsColimit.ofCoconeEquiv_symm_apply_desc, embeddingCongr_symm, WithZero.expEquiv_symm, AlgebraicGeometry.coe_opensRestrict_symm_apply, Function.IsFixedPt.equiv_symm, TensorAlgebra.lift_symm_apply, Primrec.of_equiv_symm_iff, LatticeHom.symm_dual_id, DirectSum.decompose_symm_neg, LinearMap.polyCharpolyAux_map_eval, CommRing.Pic.inv_eq_dual, RootPairing.EmbeddedG2.indexEquivAllRoots_symm_apply, symm_toHomeomorph, Affine.Simplex.excenterWeights_reindex, CategoryTheory.LiftLeftAdjoint.constructLeftAdjointEquiv_apply, finSumNatEquiv_symm_apply_add_left, CategoryTheory.Limits.IsInitial.to_eq_descCoconeMorphism, piCongrLeft_symm_preimage_univ_pi, AlgHom.prodEquiv_symm_apply, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerRight, QuadraticAlgebra.equivProd_symm_apply, Function.update_comp_equiv, Algebra.GrothendieckGroup.lift_symm_apply, Topology.isGeneratedBy_iff, CategoryTheory.Oplax.StrongTrans.Modification.equivOplax_symm_apply, ContinuousAlternatingMap.piEquiv_symm_apply, Affine.Simplex.median_reindex, DyckWord.equivTreesOfNumNodesEq_symm_apply_coe, PartialEquiv.transEquiv_target, Fin.coe_of_injective_castSucc_symm, Matrix.submatrix_id_mul_right, Prod.Lex.sumLexProdLexDistrib_symm_apply, MulChar.equivToUnitHom_symm_coe, exteriorPower.presentation.relationsSolutionEquiv_symm_apply_var, NumberField.det_basisOfFractionalIdeal_eq_absNorm, Matrix.reindex_apply, Function.fromTypes_zero_equiv_symm_apply, dotProduct_comp_equiv_symm, CategoryTheory.Sieve.overEquiv_symm_iff, DihedralGroup.oddCommuteEquiv_symm_apply, MonoidHom.fiberEquiv_symm_apply, equivShrink_symm_zero, CategoryTheory.GrothendieckTopology.overEquiv_symm_mem_over, CategoryTheory.conjugateEquiv_counit_symm, CategoryTheory.Sieve.functorPushforward_over_map, DirectSum.decompose_symm_one, CommRing.Pic.mk_eq_iff, sumIsLeft_symm_apply_coe, Pi.mulSingle_comp_equiv, sumProdDistrib_symm_apply_right, sumArrowEquivProdArrow_symm_apply_inr, CategoryTheory.PreGaloisCategory.autIsoFibers_inv_app, CategoryTheory.Limits.Fork.IsLimit.homIso_symm_apply, CategoryTheory.Functor.natTransEquiv_symm_apply_app, CategoryTheory.Functor.homEquivOfIsLeftKanExtension_symm_apply, Orthonormal.equiv_symm, Module.Basis.equiv_symm, PiTensorProduct.reindex_trans, addMonoidAlgebraEquivDirectSum_symm_apply, biSup_comp, OrderIso.toEquiv_symm, ContinuousMultilinearMap.ofSubsingleton_symm_apply_apply, CommRing.Pic.mk_eq_self, HahnSeries.SummableFamily.smul_hsum, Matrix.updateRow_reindex, Topology.IsGeneratedBy.continuous_equiv_symm, right_inv', finSuccEquiv'_symm_coe_above, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_left, CategoryTheory.Limits.FintypeCat.productEquiv_symm_comp_Ο€_apply, optionSubtype_apply_symm_apply, MulAction.toPerm_symm_apply, Continuous.continuous_symm_of_equiv_compact_to_t2, InfHom.dual_symm_apply_toFun, List.getEquivOfForallCountEqOne_symm_apply_val, Multiplicative.ofAdd_symm_eq, CategoryTheory.InducedCategory.homEquiv_symm_apply_hom, AddMonoidHom.toMultiplicative_symm_apply_apply, CategoryTheory.Limits.FormalCoproduct.isoOfComponents_inv_f, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_pt, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_one_assoc, ContinuousMultilinearMap.prodEquiv_symm_apply_fst, GradedAlgebra.proj_recompose, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, LieAlgebra.lieCharacterEquivLinearDual_symm_apply, SkewMonoidAlgebra.coeff_equivMapDomain, symm_comp_eq, sigmaEquivProd_symm_apply, PiTensorProduct.reindex_tprod, DomAddAct.symm_mk_neg, CategoryTheory.conjugateEquiv_symm_iso, toPartialEquivOfImageEq_symm_apply, DomMulAct.continuous_mk_symm, HahnSeries.of_symm_smul_of_eq_mul, LinearEquiv.isAdjointPair_symm_iff, HahnSeries.SummableFamily.smul_toFun, PowerBasis.liftEquiv_symm_apply, AddEquiv.op_symm_apply_symm_apply, LinearIsometryEquiv.coe_prodAssoc_symm, CategoryTheory.Subfunctor.ofSection_eq_range', bijOn_symm_image, Abelianization.coe_lift_symm, DomMulAct.smul_mulActionHom_apply, MulEquiv.arrowCongr_apply, Perm.sameCycle_inv_apply_right, OrderHom.symm_dual_id, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_naturality_right, trans_cancel_right, CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_fst_apply, SetTheory.PGame.Relabelling.mk'_rightMovesEquiv, symm_apply_eq, symm_symm, CategoryTheory.Limits.IsLimit.homEquiv_symm_Ο€_app, AddUnits.addLeft_symm, Matrix.submatrix_updateCol_equiv, finSuccAboveEquiv_symm_apply_ne_last, CommRing.Pic.mapAlgebra_apply, NonUnitalAlgHom.prodEquiv_symm_apply, CategoryTheory.tensorLeftHomEquiv_tensor, Topology.WithScott.toScott_symm_eq, pnatEquivNat_symm_apply, CommRing.Pic.ext_iff, zero_def, sumSumSumComm_symm, IsPrimitiveRoot.primitiveRootsPowEquiv_symm_apply_coe, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_obj, DomAddAct.symm_mk_add, CategoryTheory.FinCategory.asTypeToObjAsType_obj, sigmaFinsuppEquivDFinsupp_symm_apply, CategoryTheory.Limits.CofanTypes.equivOfIsColimit_symm_apply, optionProdEquiv_symm_inl, Set.opEquiv_self_symm_apply_coe, Delone.DeloneSet.mapIsometry_symm_apply_coveringRadius, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_three, SheafOfModules.freeHomEquiv_symm_comp, Affine.Simplex.exsphere_reindex, CategoryTheory.CosimplicialObject.cechConerveEquiv_symm_apply, SetTheory.PGame.relabel_moveLeft, symm_trans_apply, Matrix.submatrix_mulVec_equiv, ContinuousMap.val_unitsLift_symm_apply_apply, CategoryTheory.Functor.RepresentableBy.equivOfIsoObj_symm_apply, CategoryTheory.FunctorToTypes.binaryProductEquiv_symm_apply, SimpleGraph.comap_symm, symm_swap, CategoryTheory.GradedObject.comapEquiv_unitIso, CommRing.Pic.instFreeAsModuleOfNat, SimpleGraph.Walk.IsHamiltonian.getVertEquiv_symm_apply, Module.Relations.Solution.directSumEquiv_symm_apply_var, FreeGroup.lift_symm_apply, Finset.univ_perm_option, AddConstEquiv.coe_symm_toEquiv, BoundedOrderHom.symm_dual_comp, piCongrLeft_symm_preimage_pi, BialgEquiv.toEquiv_symm, Real.sinhEquiv_symm_apply, SetTheory.PGame.moveRight_nim, Module.Basis.det_reindex_symm, sSupHom.dual_symm_apply_toFun, AddCircle.continuous_equivIoc_symm, AddEquiv.toEquiv_symm, Finsupp.equivFunOnFinite_symm_apply_support, Perm.signAux3_symm_trans_trans, Quiver.SingleObj.pathEquivList_symm_cons, Fin.cycleIcc_to_cycleRange, CochainComplex.HomComplex.CohomologyClass.equivOfIsKInjective_symm_apply, UniqueFactorizationMonoid.normalizedFactorsEquiv_symm_apply, Set.univPi_symm_apply_coe, MeasureTheory.diracProba_comp_diracProbaEquiv_symm_eq_val, CategoryTheory.Limits.IsLimit.equivIsoLimit_symm_apply, AffineBasis.basisOf_reindex, FintypeCat.equivEquivIso_apply_inv, finSumFinEquiv_symm_apply_castAdd, AlgebraicGeometry.Scheme.Pullback.carrierEquiv_symm_snd, plift_symm_apply, SSet.stdSimplex.map_apply, Matrix.comp_toSquareBlock, CategoryTheory.CartesianClosed.homEquiv_symm_apply_eq, toHomeomorphOfContinuousOpen_symm_apply, DomMulAct.smul_aeeqFun_aeeq, NonUnitalRingHom.op_symm_apply_apply, Perm.signAux_eq_signAux2, CategoryTheory.bijection_symm_apply_id, SSet.ΞΉβ‚€_snd, ComplexShape.symmetryEquiv_symm_apply_coe, Matrix.cramer_reindex, Rep.resIndAdjunction_homEquiv_symm_apply, Function.Embedding.equiv_symm_toEmbedding_trans_toEmbedding, Subgroup.quotientEquivProdOfLE_symm_apply, DomMulAct.isQuotientMap_mk_symm, CategoryTheory.ShortComplex.Homotopy.equivSubZero_symm_apply, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, ContinuousMap.sigmaEquiv_symm_apply, AddEquiv.add_submonoid_map_symm_apply, toPEquiv_symm, CategoryTheory.ProjectiveResolution.of_def, PerfectRing.liftEquiv_symm_apply, WithCStarModule.equiv_symm_smul, FreeNonUnitalNonAssocAlgebra.lift_symm_apply, FreeSemigroup.lift_symm_apply, pow_def, AddHom.op_symm_apply_apply, Shrink.ext_iff, subtypeEquivRight_symm_apply, CategoryTheory.Sieve.overEquiv_symm_pullback, DomAddAct.comap_mk.symm_nhds, OrthonormalBasis.reindex_apply, Fin.insertNthEquiv_symm_apply, Zsqrtd.lift_symm_apply_coe, Finset.union_symm_left, RootPairing.flipEquiv_symm_apply, CategoryTheory.unit_conjugateEquiv_symm, EquivFunctor.mapEquiv_symm, PiTensorProduct.reindex_symm, addRight_symm_apply, Set.sumCompl_symm_apply_of_mem, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, Nat.divModEquiv_symm_apply, Matrix.toLin'_reindex, HahnModule.coeff_smul_order_add_order, HahnModule.of_symm_smul, ofBoolAlg_symm_eq, EquivLike.coe_symm_apply_apply, Topology.WithLowerSet.toLowerSet_symm, AddEquiv.arrowCongr_apply, DomAddAct.symm_mk_zsmul, Monoid.PushoutI.homEquiv_symm_apply, equivShrink_symm_top, Set.sumCompl_symm_apply, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, PartENat.withTopEquiv_symm_ofNat, CategoryTheory.Groupoid.isoEquivHom_symm_apply_hom, CategoryTheory.FunctorToTypes.shrink_map, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_Ο†, CategoryTheory.LocallyDiscrete.locallyDiscreteEquiv_symm_apply_as, sumPiEquivProdPi_symm_preimage_univ_pi, Function.Embedding.congr_apply, CategoryTheory.Localization.homEquiv_symm_apply, SimpleGraph.incidenceSetEquivNeighborSet_symm_apply_coe, conj_symm, Unitization.val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, CategoryTheory.CountableCategory.instLocallySmallObjAsType, Finsupp.lcongr_symm, Matrix.compRingEquiv_symm_apply, Finsupp.sumFinsuppEquivProdFinsupp_symm_inr, BoundedLatticeHom.dual_symm_apply_toFun, finCycle_symm_apply, DomMulAct.symm_mk_one, CategoryTheory.FinCategory.objAsTypeToAsType_map, Function.fromTypes_succ_equiv_symm_apply, CategoryTheory.Functor.flippingEquiv_symm_apply_map_app, Perm.set_support_inv_eq, MultilinearMap.freeDFinsuppEquiv_def, CategoryTheory.tensorRightHomEquiv_symm_coevaluation_comp_whiskerLeft, Affine.Simplex.exradius_reindex, UniformEquiv.coe_symm_toEquiv, CategoryTheory.Limits.SingleObj.Types.limitEquivFixedPoints_symm_apply, Function.FromTypes.curryEquiv_symm_apply, TopologicalSpace.Compacts.equiv_symm_apply, withTopSubtypeNe_symm_apply_coe, Unitization.val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, Subgroup.quotientEquivProdOfLE'_symm_apply, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly_assoc, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, refl_symm, AddEquiv.mulOp_symm_apply, RootPairing.Hom.coroot_coweightMap, MaximalSpectrum.equivSubtype_symm_apply_asIdeal, CategoryTheory.Limits.Types.Small.productIso_inv_comp_Ο€_apply, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, QuotientAddGroup.equivIcoMod_symm_apply, CompleteLatticeHom.symm_dual_id, SSet.ι₁_snd_assoc, PresheafOfModules.toSheaf_map_sheafificationHomEquiv_symm, finTwoArrowEquiv_symm_apply, CategoryTheory.Limits.compCoyonedaSectionsEquiv_symm_apply_coe, CategoryTheory.Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, CategoryTheory.Functor.flippingEquiv_symm_apply_obj_obj, Units.mulLeft_symm, FreeAddMonoid.ofList_symm, finEquivMultiples_symm_apply, CStarMatrix.toCLM_apply_single, graph_inv, Finset.equivBitIndices_symm_apply, piCongr'_symm_apply_symm_apply, DirectSum.decompose_symm_algebraMap, eq_comp_symm, AddEquiv.toMultiplicativeLeft_symm_apply_symm_apply, Finset.union_symm_right, Fin.cycleRange_symm_zero, MulEquiv.symm_monoidHomCongrRightEquiv, Computable.symm, Matroid.mapEquiv_dep_iff, Set.powersetCard.ofFinEmbEquiv_symm_apply, Matrix.det_reindex, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_map, SSet.OneTruncationβ‚‚.nerveEquiv_symm_apply_map, Multiset.uIcc_eq, multiplesHom_symm_apply, MvPolynomial.universalFactorizationMapPresentation_map, isLeft_finSumNatEquiv_symm_apply, ulift_symm_apply, DirectSum.decompose_symm_add, IsArtinianRing.primeSpectrumEquivMaximalSpectrum_symm_apply_asIdeal, Delone.DeloneSet.mapIsometry_symm, MeasureTheory.VectorMeasure.equivMeasure_symm_apply, WithLp.equiv_symm_apply, Affine.Simplex.touchpointWeights_reindex, Fin.coe_of_injective_castLE_symm, DomMulAct.isClosedEmbedding_mk_symm, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, Topology.WithUpper.ofUpper_symm, AddChar.toAddMonoidHomEquiv_symm_zero, coe_vaddConst_symm, Module.Basis.coe_reindex, MeasurableEquiv.measurable_invFun, toBoolAlg_symm_eq, CStarMatrix.toCLM_apply_eq_sum, DFinsupp.linearEquivFunOnFintype_symm_apply, Perm.decomposeOption_symm_of_none_apply, LieAlgebra.LieEquiv.ofCoboundary_toFun, PadicInt.coe_adicCompletionIntegersEquiv_apply, invOn, DFinsupp.equivCongrLeft_apply, Matrix.reindexLieEquiv_symm, AlgEquiv.piCongrLeft'_apply, Subgroup.IsComplement.equiv_symm_apply, pprodCongr_symm_apply, SSet.ι₁_snd, Orthonormal.map_equiv, DyckWord.equivTree_symm_apply, Homeomorph.piCongrLeft_apply, QuaternionAlgebra.lift_symm_apply, ContinuousMultilinearMap.prodEquiv_symm_apply, Continuous.homeoOfEquivCompactToT2.t1_counterexample, AddMonoidHom.op_symm_apply_apply, AddConstEquiv.toEquiv_symm, Tropical.tropEquiv_symm_coe_fn, Monoid.CoprodI.Word.equivPair_symm, DFA.symm_reindex, AddEquiv.toMultiplicativeRight_symm_apply_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, optionSubtypeNe_symm_apply, CategoryTheory.PreOneHypercover.inter_pβ‚‚, exteriorPower.ΞΉMultiDual_apply_ΞΉMulti, PiTensorProduct.lift_comp_reindex, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, FreeGroupBasis.reindex_apply, CategoryTheory.Sheaf.Ξ“ObjEquivSections_naturality_symm, Matrix.vecMul_permMatrix, PrimeSpectrum.primeSpectrumProd_symm_inr, arrowCongr_symm, mulRight_symm, CategoryTheory.Limits.Types.limitEquivSections_symm_apply, Finsupp.domCongr_symm, Perm.perm_symm_mapsTo_iff_mapsTo, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor, sigmaUnique_symm_apply, Set.sumDiffSubset_symm_apply_of_notMem, ofBijective_symm_apply_apply, Shrink.algEquiv_apply, CategoryTheory.Bicategory.conjugateEquiv_symm_comm, Setoid.prodQuotientEquiv_symm_apply, FreeMonoid.ofList_symm, CategoryTheory.Bicategory.mateEquiv_symm_apply, ModuleCat.ExtendRestrictScalarsAdj.homEquiv_symm_apply, CategoryTheory.Limits.Concrete.prodEquiv_symm_apply_snd, optionSubtype_symm_apply_apply_none, tangentBundle_model_space_coe_chartAt_symm, CategoryTheory.PreZeroHypercover.interSnd_hβ‚€, coe_piCongr', CategoryTheory.conjugateEquiv_symm_comp, Affine.Simplex.range_faceOpposite_reindex, Affine.Simplex.altitudeFoot_reindex, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_app_apply, finSumFinEquiv_symm_last, Matrix.cons_mul, MulOpposite.opEquiv_symm_apply, SupHom.symm_dual_id, image_eq_preimage, CategoryTheory.Sheaf.Ξ“ObjEquivHom_naturality_symm, subLeft_symm_apply, MonoidHom.op_symm_apply_apply, RootPairing.Equiv.comp_indexEquiv_symm_apply, ofInjective_symm_apply, subtypeEquivRight_symm_apply_coe, SimpleGraph.map_symm, Function.piCongrLeft'_update, piCongrLeft_sumInl, equivTangentBundleProd_symm_apply_snd, option_symm_apply_none_iff, smul_def, AddMonoidAlgebra.lift_symm_apply, Matrix.one_submatrix_mul, Perm.coe_inv, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, SimpleGraph.Walk.IsHamiltonian.supportGetEquiv_symm_apply_val, circleEquivGen_symm_apply, Quiver.Hom.opEquiv_symm_apply, Matrix.reindex_updateRow, WeakDual.CharacterSpace.compContinuousMap_apply, CategoryTheory.tensorRightHomEquiv_tensor, prodProdProdComm_symm, AddEquiv.symm_addMonoidHomCongrLeftEquiv, DomAddAct.vadd_aeeqFun_aeeq, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_f_coe, CStarMatrix.toCLM_apply, AddEquiv.symm_map_add, CategoryTheory.Limits.WalkingPair.swap_symm_apply_tt, BoundedLatticeHom.symm_dual_id, Finsupp.equivFunOnFinite_symm_coe, AddEquiv.addMonoidHomCongrRightEquiv_symm_apply, finSumFinEquiv_symm_apply_natAdd, LinearEquiv.piCongrLeft'_symm_apply, AddChar.toAddMonoidHomEquiv_symm_apply, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, CategoryTheory.Functor.RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, finsuppUnique_symm_apply_apply, MulEquiv.symm_monoidHomCongrLeftEquiv, CategoryTheory.discreteEquiv_symm_apply_as, Encodable.decode_ofEquiv, Topology.IsGeneratedBy.equiv_symm_comp_continuous_iff, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, DomAddAct.vadd_Lp_ae_eq, FintypeCat.equivEquivIso_symm_apply_apply, Sym2.coe_lift_symm_apply, AlgebraicGeometry.IsOpenImmersion.opensEquiv_symm_apply, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two, CategoryTheory.Limits.IsColimit.homEquiv_symm_naturality, CategoryTheory.Equivalence.induced_inverse_map, CategoryTheory.Presieve.FamilyOfElements.singletonEquiv_symm_apply, existsUnique_congr_left, AddChar.toMonoidHomEquiv_symm_one, WithCStarModule.linearEquiv_symm_apply, CategoryTheory.Functor.coconeTypesEquiv_symm_apply_ΞΉ, SetTheory.PGame.moveRight_neg, Function.Involutive.symm_eq_self_of_involutive, Matrix.submatrix_updateRow_equiv, induced_symm, val_unitsEquivProdSubtype_symm_apply, Set.image_symm_preimage, TwoSidedIdeal.coe_equivMatrix_symm_apply, Fin.consEquiv_symm_apply, sumCompl_apply_symm_of_neg, subtypeEquivCodomain_symm_apply_eq, derivationToSquareZeroEquivLift_symm_apply_apply_coe, Delone.DeloneSet.mapIsometry_symm_apply_packingRadius, CategoryTheory.Enriched.Functor.natTransEquiv_symm_app_app_apply, CategoryTheory.Functor.curryingFlipEquiv_symm_apply_obj_map, Denumerable.ofEquiv_ofNat, FirstOrder.Language.Term.constantsVarsEquivLeft_symm_apply, CliffordAlgebra.lift_symm_apply, inducedStructure_funMap, Matrix.submatrix_id_mul_left, sigmaAssocProd_symm_apply_snd, Rep.diagonalOneIsoLeftRegular_inv_hom, Perm.one_symm, Set.rangeSplittingImageEquiv_symm_apply_coe, ZeroAtInftyContinuousMap.ContinuousMap.liftZeroAtInfty_symm_apply, Nat.pairEquiv_symm_apply, Matrix.compLinearEquiv_symm_apply, Filter.Realizer.ofEquiv_F, CategoryTheory.mateEquiv_symm_apply, QuadraticAlgebra.lift_symm_apply_coe, ofFiberEquiv_apply, AlgEquiv.op_symm_apply_symm_apply, UniversalEnvelopingAlgebra.lift_symm_apply, OnePoint.equivProjectivization_symm_apply_mk, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_symm_apply, Perm.mul_symm, CategoryTheory.Functor.curryingEquiv_symm_apply_map_app, coe_finRotate_symm_of_ne_zero, FormalMultilinearSeries.changeOriginIndexEquiv_symm_apply_snd_fst, CategoryTheory.Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryTheory.Bicategory.conjugateEquiv_symm_comp, CommBialgCat.isoEquivBialgEquiv_symm_apply, HahnModule.ext_iff, CategoryTheory.Limits.Types.Small.limitCone_pt_ext_iff, RingEquiv.sumArrowEquivProdArrow_symm_apply, CategoryTheory.Limits.Types.Small.limitCone_Ο€_app, CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_snd_apply, Finsupp.sumFinsuppEquivProdFinsupp_symm_apply, natSumNatEquivNat_symm_apply, permCongr_apply, Fintype.coe_finsetOrderIsoSet_symm, Matrix.col_eq_transpose, IsometryEquiv.piCongrLeft_symm_apply, CategoryTheory.CoreSmallCategoryOfSet.smallCategoryOfSet_comp, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_left_symm, CategoryTheory.Adjunction.homEquiv_naturality_right_square_iff, Homeomorph.continuous_sumAssoc_symm, CategoryTheory.Functor.flippingEquiv_symm_apply_obj_map, WithCStarModule.norm_single, MultilinearMap.iteratedFDeriv_aux, Matrix.reindexAlgEquiv_symm, HahnModule.of_symm_add, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, sumCongr_symm, DFinsupp.subtypeSupportEqEquiv_symm_apply_coe, MulRingNorm.mulRingNormEquivAbsoluteValue_symm_apply, Unitization.lift_symm_apply, WithCStarModule.equiv_symm_sub, CategoryTheory.Adjunction.homAddEquiv_symm_zero, AddEquiv.addMonoidHomCongrLeftEquiv_symm_apply, Perm.decomposeFin_symm_apply_succ, Perm.sign_symm_trans_trans, AlgebraicGeometry.coprodSpec_coprodMk, CStarMatrix.mul_entry_mul_eq_inner_toCLM, CoxeterMatrix.reindexGroupEquiv_apply_simple, Finset.mem_map_equiv, MulEquiv.symm_map_mul, prodComm_symm, CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv_symm_apply_val, MulAction.orbitZPowersEquiv_symm_apply, PadicInt.continuousAddCharEquiv_of_norm_mul_symm_apply, MulChar.ofUnitHom_eq, PartENat.withTopEquiv_symm_one, Sym2.sortEquiv_symm_apply, permCongr_symm, CStarMatrix.ofMatrix_symm_apply, CategoryTheory.CommSq.left_adjoint_hasLift_iff, WithBot.ofDual_symm_apply, AddEquiv.symmEquiv_symm_apply_apply, sigmaSigmaSubtype_apply, toLex_symm_eq, permCongrHom_symm, IsFreeGroup.lift_symm_apply, QuaternionAlgebra.re_equivProd_symm_apply, ContinuousLinearEquiv.unitsEquivAut_symm_apply, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, AddUnits.addRight_symm, Invertible.mulLeft_symm_apply, Metric.Snowflaking.symm_toSnowflaking, mul_def, ContinuousMultilinearMap.prodEquiv_symm_apply_snd, CategoryTheory.ShiftedHom.opEquiv'_symm_apply, Circle.argEquiv_symm_apply, Valuation.toAddValuation_symm_eq, sigmaAssocProd_symm_apply_fst, LinearEquiv.toEquiv_symm, CategoryTheory.Monad.MonadicityInternal.comparisonLeftAdjointHomEquiv_symm_apply, CategoryTheory.CommSq.LiftStruct.opEquiv_symm_apply, CategoryTheory.Bicategory.mateEquiv_eq_iff, CategoryTheory.Arrow.equivSigma_symm_apply_hom, preimage_symm_preimage, Submodule.isIdempotentElemEquiv_symm_apply_coe, DFinsupp.sigmaCurryLEquiv_symm_apply, piComm_symm, FirstOrder.Language.Formula.realize_equivSentence_symm_con, MonoidHom.toAdditiveRight_symm_apply_apply, symm_trans_swap_trans, AddMonoidHom.toMultiplicativeLeft_symm_apply_apply, Fin.succFunEquiv_symm_apply, WithCStarModule.inner_single_right, FreeAddMonoid.freeAddMonoidCongr_symm_of, CategoryTheory.Limits.Cotrident.IsColimit.homIso_symm_apply, AddEquiv.coe_toEquiv_symm, HahnModule.coeff_smul, FreeMonoid.toList_symm, CategoryTheory.Limits.Concrete.prodEquiv_symm_apply_fst, mulLeft_symm_apply, LatticeHom.symm_dual_comp, Finsupp.equivMapDomain_symm_apply, finSuccEquiv_symm_some, Sym2.coe_liftβ‚‚_symm_apply, Fin.equivSubtype_symm_trans_valEmbedding, MulEquiv.submonoidMap_symm_apply, Matrix.kronecker_assoc', CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv, Cubic.equiv_symm_apply_b, LinearEquiv.sumPiEquivProdPi_symm_apply, AddEquiv.coe_prodAssoc_symm, WithTop.toDual_symm_apply, SheafOfModules.Presentation.map_relations_I, Multiplicative.toAdd_symm_eq, DomMulAct.comap_mk.symm_nhds, MultilinearMap.domDomCongrLinearEquiv'_apply, finEquivZMultiples_symm_apply, ComplexShape.Embedding.homEquiv_symm_apply, prodSumDistrib_symm_apply_right, trans_swap_trans_symm, HahnModule.coeff_single_zero_smul, Shrink.toEquiv_homeomorph, SSet.stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, Affine.Simplex.altitude_reindex, AddEquiv.toMultiplicativeRight_symm_apply_symm_apply, RingHom.op_symm_apply_apply, finSuccEquiv'_symm_some_below, DualNumber.coe_lift_symm_apply, Finset.sigmaAntidiagonalEquivProd_symm_apply_snd_coe, CategoryTheory.Functor.isIso_lanAdjunction_homEquiv_symm_iff, Matrix.cramer_submatrix_equiv, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_fst, Matrix.mulVecLin_submatrix, QuaternionAlgebra.imK_equivProd_symm_apply, piEquivPiSubtypeProd_symm_apply, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_fst, finRotate_succ_symm_apply, sigmaSubtype_symm_apply_coe_snd, Matrix.comp_symm_diagonal, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Functor.sectionsEquivHom_naturality_symm, CategoryTheory.ParametrizedAdjunction.homEquiv_symm_naturality_two_assoc, equivCongr_symm, CategoryTheory.Equalizer.Presieve.Arrows.compatible_iff_of_small, Bifunctor.mapEquiv_symm_apply, CategoryTheory.Adjunction.homAddEquiv_symm_neg, OrderIso.conj_symm_apply, CoalgEquiv.coe_symm_toEquiv, FirstOrder.Language.LEquiv.onBoundedFormula_symm_apply, Diffeomorph.contMDiff_invFun, CoalgEquiv.coe_toEquiv_symm, MulAction.orbitEquivQuotientStabilizer_symm_apply, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom, toHomeomorphOfContinuousClosed_symm_apply, Partition.partscopyEquiv_symm_apply_coe, Diffeomorph.symm_toEquiv, Perm.decomposeOption_symm_sign, Topology.WithGeneratedByTopology.continuous_from_iff, SetTheory.PGame.Domineering.shiftRight_symm_apply, Ideal.associatesEquivIsPrincipal_symm_apply, CategoryTheory.Limits.Pi.whiskerEquiv_hom, CategoryTheory.unit_mateEquiv_symm, AddEquiv.toMultiplicative_symm_apply_apply, symm_simpleGraph, Matrix.mul_submatrix_one, IsSimpleOrder.equivBool_symm_apply, finsetSubtypeComm_symm_apply, image_eq_preimage_symm, MulEquiv.toAdditive_symm_apply_apply, CategoryTheory.Functor.CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, sumProdDistrib_symm_apply_left, Finset.univ_perm_fin_succ, withBotCongr_symm, Topology.WithLawson.to_Lawson_symm_eq, measurable_equivCurry_symm, uniqueSigma_symm_apply, CategoryTheory.WithTerminal.widePullbackShapeEquiv_inverse_obj, CategoryTheory.Sheaf.Ξ“HomEquiv_naturality_right_symm, CategoryTheory.Sieve.overEquiv_symm_generate, SSet.stdSimplex.objβ‚€Equiv_symm_mem_face_iff, CategoryTheory.Limits.FormalCoproduct.inclHomEquiv_symm_apply_f, CategoryTheory.Equivalence.induced_unitIso, LinearMap.polyCharpolyAux_map_aeval, sInfHom.dual_symm_apply_toFun, embeddingEquivOfFinite_symm_apply, WithTop.toDual_symm, CStarMatrix.reindexₐ_symm, DomAddAct.isQuotientMap_mk_symm, pprodProd_symm_apply, SSet.stdSimplex.objEquiv_symm_comp, nsmulCoprime_symm_apply, finProdFinEquiv_symm_apply, symmEquiv_symm_apply_apply, AddEquiv.addSubmonoidMap_symm_apply, NumberField.inverse_basisMatrix_mulVec_eq_repr, MonoidAlgebra.liftMagma_symm_apply, IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen, AddMonoidAlgebra.liftMagma_symm_apply, Affine.Simplex.faceOppositeCentroid_reindex, permCongr_def, CategoryTheory.Equivalence.induced_inverse_obj, MulEquiv.coe_prodAssoc_symm, removeNone_symm, trans_cancel_left, CategoryTheory.Adjunction.CoreHomEquiv.homEquiv_naturality_left_symm, CategoryTheory.Functor.IsRepresentedBy.uliftYonedaIso_hom, SetTheory.PGame.Domineering.shiftUp_symm_apply, CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_hom, SimpleGraph.Iso.boxProdSumDistrib_symm_apply, AddAction.toPermHom_apply_symm_apply, CategoryTheory.MonObj.ofRepresentableBy_mul, ofColex_symm_eq, Matrix.compAlgEquiv_symm_apply, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply, CategoryTheory.Limits.limitCompYonedaIsoCocone_inv, CategoryTheory.SimplicialObject.cechNerveEquiv_symm_apply, QuotientAddGroup.equivIocMod_symm_apply, CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv_symm, FirstOrder.Ring.MvPolynomialSupportLEEquiv_symm_apply_coeff, finTwoArrowEquiv'_symm_apply, Hamming.toHamming_symm_eq, withTopCongr_symm, MvPolynomial.renameSymmetricSubalgebra_symm_apply_coe, AddAction.toPerm_symm_apply, Finsupp.lcongr_symm_single, Perm.perm_symm_mapsTo_of_mapsTo, prodCongrLeft_symm, Set.coe_unionEqSigmaOfDisjoint_symm_apply, UniformSpace.Completion.uniformContinuous_completionSeparationQuotientEquiv_symm, Prefunctor.costar_conj_star, Monoid.PushoutI.NormalWord.summand_smul_def', CategoryTheory.forgetAdjToOver.homEquiv_symm, FinEnum.down_equiv_symm, self_comp_symm, Finsupp.equivMapDomain_apply, Finsupp.domLCongr_symm, RingEquiv.piCongrLeft_apply, ChainComplex.fromSingleβ‚€Equiv_symm_apply_f_zero, AddSubsemigroup.equivOp_symm_apply_coe, DirectSum.decomposeLinearEquiv_symm_apply, sumAssoc_symm_apply_inr_inl, Affine.Simplex.touchpoint_reindex, PresheafOfModules.comp_toPresheaf_map_sheafifyHomEquiv'_symm_hom, AddHom.mulOp_symm_apply_apply, CategoryTheory.Discrete.equivalence_counitIso, OrthonormalBasis.equiv_symm, AddAction.orbitEquivQuotientStabilizer_symm_apply, AlgebraicGeometry.Scheme.IsLocallyDirected.glueDataΞΉ_naturality, Finset.map_insertNthEquiv_filter_piFinset, LinearEquiv.symmEquiv_symm_apply_apply, IsPGroup.powEquiv_symm_apply, IsometryEquiv.piCongrLeft_apply, ContinuousMultilinearMap.iteratedFDerivComponent_apply, EquivLike.apply_coe_symm_apply, Matrix.updateCol_submatrix_equiv, ulift_symm_down, Topology.WithScott.ofScott_symm_eq, CFilter.ofEquiv_val, Setoid.piQuotientEquiv_symm_apply, RingEquiv.op_symm_apply_symm_apply, Perm.perm_inv_on_of_perm_on_finset, CategoryTheory.ShiftedHom.opEquiv_symm_apply_comp, CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit, BotHom.dual_symm_apply_apply, ArchimedeanOrder.val_symm_eq, Quiver.starEquivCostar_symm_apply, prodPiEquivSumPi_symm_apply, MulEquiv.symmEquiv_symm_apply_apply, CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply, Perm.extendDomain_symm, emptySum_symm_apply, AddOpposite.opEquiv_symm_apply, CategoryTheory.isoOpEquiv_symm_apply, subtypePreimage_symm_apply_coe_pos, LieAlgebra.LieEquiv.ofCoboundary_invFun, Matrix.piEquiv_symm_apply, CochainComplex.toSingleβ‚€Equiv_symm_apply_f_succ, toBoolRing_symm_eq, coinduced_symm, Rep.coindResAdjunction_homEquiv_symm_apply, RingEquiv.coe_toEquiv_symm, FirstOrder.Language.LEquiv.onBoundedFormula_symm, LocallyConstant.congrLeft_symm_apply, smulRight_symm_apply, prodCongr_symm, SupBotHom.symm_dual_id, CategoryTheory.Localization.SmallShiftedHom.postcompEquiv_symm_apply, piCongrLeft'_symm, finSumFinEquiv_symm_apply_castSucc, CategoryTheory.Limits.WalkingPair.equivBool_symm_apply_false, ContinuousMap.val_addUnitsLift_symm_apply_apply, MulAction.orbitZPowersEquiv_symm_apply', Affine.Simplex.reindex_points, sigmaEquivProd_sigmaCongrRight, CategoryTheory.typeEquiv_counitIso_hom_app_val_app, Sym.equivCongr_symm_apply, Perm.inv_def, FreeMagma.lift_symm_apply, CategoryTheory.CategoryOfElements.toCostructuredArrow_obj, CategoryTheory.Limits.FormalCoproduct.cofanHomEquiv_symm_apply_f, CategoryTheory.Presheaf.uliftYonedaAdjunction_unit_app_app, Affine.Simplex.range_face_reindex, CategoryTheory.ShiftedHom.opEquiv'_symm_add, AddMonoidHom.fiberEquivKer_symm_apply, CliffordAlgebra.even.lift_symm_apply_bilin, ofRightInverseOfCardLE_symm_apply, CategoryTheory.PreZeroHypercover.inter_def, SSet.stdSimplex.yonedaEquiv_map, Finmap.keysLookupEquiv_symm_apply_keys, sigmaAntidiagonalEquivProd_symm_apply_fst, optionEquivSumPUnit_symm_inl, Pointed.Iso.mk_inv_toFun, CategoryTheory.Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, CategoryTheory.Localization.SmallShiftedHom.precompEquiv_symm_apply, Bundle.TotalSpace.toProd_symm_apply_snd, CategoryTheory.CommSq.left_adjoint, Set.insert_symm_apply_inl, ChainComplex.toSingleβ‚€Equiv_symm_apply_f_zero, DFinsupp.equivProdDFinsupp_symm_apply, HahnModule.orderTop_vAdd_le_orderTop_smul, CategoryTheory.Limits.limitCompCoyonedaIsoCone_inv, CategoryTheory.ShiftedHom.opEquiv'_zero_add_symm, finCongr_symm_apply, CategoryTheory.ShiftedHom.opEquiv'_symm_op_opShiftFunctorEquivalence_counitIso_inv_app_op_shift, Cubic.equiv_symm_apply_c, MonoidAlgebra.uniqueRingEquiv_symm_apply, CategoryTheory.MonoidalClosed.homEquiv_symm_apply_eq, QuaternionAlgebra.coe_symm_addEquivProd, PiTensorProduct.map_comp_reindex_symm, Fin.cycleRange_symm_succ, image_symm_image, piCongrLeft_apply_eq_cast, Prefunctor.symmetrifyStar, Set.rangeInr_symm_apply_coe, WType.equivSigma_symm_apply, mkFactorOrderIsoOfFactorDvdEquiv_symm_apply_coe, LightCondensed.ihomPoints_symm_apply, Complex.lift_symm_apply_coe, FreeAlgebra.lift_symm_apply, CategoryTheory.Adjunction.leftAdjointOfEquiv_map, Perm.decomposeFin_symm_of_one, DomMulAct.smul_apply, Matrix.reindex_symm, ContinuousMap.equivFnOfDiscrete_symm_apply_apply, Primrec.of_equiv_symm, MeasurableEquiv.coe_sumPiEquivProdPi_symm, ZSpan.quotientEquiv.symm_apply, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity, arrowProdEquivProdArrow_symm_apply, CategoryTheory.Limits.IsLimit.homEquiv_symm_Ο€_app_assoc, WittVector.liftEquiv_symm_apply_coe, CategoryTheory.Limits.WalkingPair.swap_symm_apply_ff, Quaternion.imJ_equivProd_symm_apply, Matrix.reindexLinearEquiv_symm, Finsupp.coe_equivFunOnFinite_symm, TopHom.symm_dual_comp, InverseSystem.piLTLim_symm_apply, prodPUnit_symm_apply, FreeAddGroup.lift_symm_apply, LocallyConstant.congrRightRingEquiv_symm_apply_apply, ContinuousAffineEquiv.coe_symm_toEquiv, piCongrFiberwise_symm_apply, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_left, AddMonoidAlgebra.uniqueRingEquiv_symm_apply, CategoryTheory.nerve.Οƒ_zero_nerveEquiv_symm, CategoryTheory.Functor.homEquivOfIsRightKanExtension_symm_apply, OnePoint.smul_infty_def, Set.piCongrLeft_comp_restrict, Finsupp.mapDomain_equiv_apply, Function.Embedding.optionEmbeddingEquiv_symm_apply, Affine.Simplex.eulerPoint_reindex, CommAlgCat.isoEquivAlgEquiv_symm_apply, BoundedOrderHom.dual_symm_apply_toOrderHom, Perm.sigmaCongrRight_symm, ContinuousLinearEquiv.arrowCongrEquiv_symm_apply, subtypeQuotientEquivQuotientSubtype_symm_mk, DomMulAct.stabilizerMulEquiv_apply, prodEquivPiFinTwo_symm_apply, CategoryTheory.Limits.SingleObj.colimitTypeRelEquivOrbitRelQuotient_symm_apply, AlternatingMap.ofSubsingleton_symm_apply_apply, FinEnum.up_equiv_symm, mulLeft_symm, coe_embeddingFinSucc_symm, Matrix.tail_transpose, CategoryTheory.equivYoneda_inv_app, CategoryTheory.uliftCoyonedaEquiv_symm_map_assoc, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_symm_apply, PartENat.withTopEquiv_symm_zero, toHomeomorph_symm, AddEquiv.toMultiplicative_symm_apply_symm_apply, BialgEquiv.coe_toEquiv_symm, SetTheory.PGame.toLeftMovesNim_symm_lt, Algebra.Generators.Hom.equivAlgHom_symm_apply_val, MultilinearMap.ofSubsingleton_symm_apply_apply, symm_bijective, Matrix.row_eq_self, CategoryTheory.Adjunction.homAddEquiv_symm_apply, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_symm_apply_f, CompactlyGenerated.isoEquivHomeo_symm_apply, tangentBundleModelSpaceHomeomorph_coe_symm, Finset.sum_map_equiv, CategoryTheory.FunctorToTypes.naturality_symm, sumCompl_apply_symm_of_pos, CategoryTheory.Limits.Trident.IsLimit.homIso_symm_apply, LieAlgebra.of_symm_nsmul, CategoryTheory.codiscreteEquiv_symm_apply_as, IsometryEquiv.piCongrLeft'_symm_apply, finSuccEquiv'_symm_none, Set.sumDiffSubset_symm_apply_of_mem, ContinuousMap.equivFnOfDiscrete_symm_apply, CategoryTheory.Groupoid.invEquiv_symm_apply, trans_eq_refl_iff_symm_eq, DirectSum.decompose_symm_mul, FreeGroupBasis.lift_symm_apply, sumSumSumComm_apply, FreeMonoid.lift_symm_apply, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_apply, CategoryTheory.Adjunction.homAddEquiv_symm_add, Functor.mapEquiv_symm_apply, MulEquiv.symmEquiv_symm_apply_symm_apply, finSuccAboveEquiv_symm_apply_last, CategoryTheory.conjugateEquiv_symm_comm, OrderIso.equivClosureOperator_symm_apply, MulEquiv.toEquiv_symm, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CoxeterMatrix.reindex_apply, Quiver.SingleObj.toHom_symm_apply, piCongrLeft_sumInr, WithBot.ofDual_symm, Affine.Simplex.signedInfDist_reindex, piCongr'_apply, Set.image_symm_apply, Filter.prod_assoc_symm, Matrix.diagonalInvertibleEquivInvertible_symm_apply, CategoryTheory.CountableCategory.instCountableHomObjAsType, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, boolProdEquivSum_symm_apply, DomMulAct.smul_Lp_ae_eq, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, DirectSum.equivCongrLeft_apply, AddCircle.continuous_equivIco_symm, Fin.insertNth_comp_cycleRange_symm, Topology.WithGeneratedByTopology.isOpen_iff, prodAssoc_symm_apply, DomAddAct.coe_mkHomeomorph_symm, subtypeUnivEquiv_symm_apply, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv, Perm.prod_comp', equivShrink_symm_add, CompactlySupportedContinuousMap.continuousMapEquiv_symm_apply, setOf_apply_symm_eq_image_setOf, AddEquiv.finsuppUnique_symm_apply_support_val, LightCondensed.ihom_map_val_app, Perm.IsCycle.zpowersEquivSupport_symm_apply, CategoryTheory.Iso.toEquiv_symm_fun, sigmaProdDistrib_symm_apply, Matrix.of_symm_single, CategoryTheory.Adjunction.homEquiv_symm_id, Perm.VectorsProdEqOne.vectorEquiv_symm_apply, FreeAddMonoid.map_symm_apply_map_eq, piCongr_symm_apply, symmEquiv_apply_symm_apply, CategoryTheory.ShiftedHom.opEquiv'_symm_comp, inducedStructure_RelMap, Function.Embedding.toEquivRange_symm_apply_self, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, addRight_symm, RingEquiv.piCongrLeft'_symm_apply, CategoryTheory.Adjunction.homEquiv_naturality_right_symm, eq_image_iff_symm_image_eq, FirstOrder.Language.LEquiv.onFormula_symm, InfTopHom.dual_symm_apply_toFun, ofPreimageEquiv_apply, Matroid.mapEquiv_indep_iff, OrderMonoidIso.coe_toEquiv_symm, CategoryTheory.FinCategory.objAsTypeToAsType_obj, CategoryTheory.Bicategory.conjugateEquiv_symm_iso, finSuccEquivLast_symm_none, OrderHom.symm_dual_comp, OnePoint.not_continuous_cofiniteTopology_of_symm, Units.mulRight_symm, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm, CategoryTheory.FreeGroupoid.functorEquiv_symm_apply, CategoryTheory.Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, Finsupp.equivCongrLeft_symm, eq_conj, sumCompl_symm_apply_neg, Matrix.toLin'_submatrix, MulEquiv.toAdditive_symm_apply_symm_apply, Multiset.cast_symm_apply_snd, finSumNatEquiv_symm_apply_add_right, BotHom.symm_dual_id, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, continuous_symm_iff, ContinuousMap.equivBoundedOfCompact_symm_apply, RingEquiv.op_symm_apply_apply, sInfHom.symm_dual_comp, CochainComplex.HomComplex.CohomologyClass.equivOfIsKProjective_symm_apply, CategoryTheory.Limits.IsColimit.equivIsoColimit_symm_apply, FirstOrder.Language.Term.relabelEquiv_symm_apply, DirectSum.liftRingHom_symm_apply_coe, Set.preimage_equiv_eq_image_symm, SSet.OneTruncationβ‚‚.ofNerveβ‚‚.natIso_inv_app_map, Module.Basis.toMatrix_reindex, LieAlgebra.of_symm_zero, AlgebraicGeometry.Ξ“Spec.adjunction_homEquiv_symm_apply, OrderDual.ofDual_symm_eq, finSuccEquiv'_symm_coe_below, AddChar.toMonoidHomEquiv_symm_mul, MeasureTheory.tendsto_diracProbaEquivSymm_iff_tendsto, finCongr_symm, Prefunctor.symmetrifyCostar, sigmaSigmaSubtypeEq_symm_apply, Finsupp.restrictSupportEquiv_symm_single, bijOn_symm, CategoryTheory.Adjunction.equivHomsetLeftOfNatIso_symm_apply, sSupHom.symm_dual_comp, boolProdNatEquivNat_symm_apply, SimpleGraph.Iso.mapNeighborSet_symm_apply_coe, CategoryTheory.Iso.homCongr_symm_apply, Hamming.ofHamming_symm_eq, finsuppEquivDFinsupp_symm_apply, IsometryEquiv.coe_symm_toEquiv, coe_piCongr_symm, Perm.equivUnitsEnd_symm_apply_symm_apply, CategoryTheory.Functor.partialRightAdjointHomEquiv_symm_comp_assoc, polarCoord_apply, prod_assoc_symm_image, TrivSqZeroExt.liftEquivOfComm_symm_apply_coe, WithCStarModule.inner_single_left, MeasurableEquiv.coe_toEquiv_symm, PartENat.withTopEquiv_symm_le, HNNExtension.NormalWord.unitsSMulEquiv_symm_apply, Polynomial.toMatrix_sylvesterMap, CategoryTheory.MonoidalClosed.curryHomEquiv'_symm_apply, Shrink.continuousLinearEquiv_apply, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, Matrix.of_symm_apply, CategoryTheory.tensorLeftHomEquiv_symm_coevaluation_comp_whiskerRight, AlgEquiv.opComm_symm_apply_apply, CategoryTheory.PreGaloisCategory.evaluationEquivOfIsGalois_symm_fiber, CategoryTheory.Functor.partialLeftAdjointHomEquiv_symm_comp_assoc, SheafOfModules.pullbackPushforwardAdjunction_homEquiv_symm_unitToPushforwardObjUnit, orderIsoShrink_symm_apply, BialgEquiv.coe_symm_toEquiv, CategoryTheory.Functor.FullyFaithful.isoEquiv_symm_apply, mulRightβ‚€_symm_apply, ContinuousMultilinearMap.piEquiv_symm_apply, StarAlgHom.prodEquiv_symm_apply, FreeAddMagma.lift_symm_apply, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, Nat.factorizationEquiv_inv_apply, FreeLieAlgebra.lift_symm_apply, AlgEquiv.opComm_symm_apply_symm_apply, CategoryTheory.Limits.Sigma.whiskerEquiv_inv, CategoryTheory.CommSq.instHasLift_1, DirectSum.decomposeAddEquiv_symm_apply, DomAddAct.symm_mk_nsmul, Monoid.CoprodI.lift_symm_apply, sumAssoc_symm_apply_inr_inr, Topology.WithUpper.toUpper_symm, neg_symm, self_trans_symm, CategoryTheory.Sieve.overEquiv_symm_top, Rep.homEquiv_symm_apply_hom, CoxeterSystem.reindex_simple, Quiver.SingleObj.pathEquivList_symm_nil, DFA.reindex_apply_step, CategoryTheory.Iso.homToEquiv_symm_apply, CategoryTheory.unitCompPartialBijective_symm_natural, Finsupp.sumFinsuppEquivProdFinsupp_symm_inl, DirectSum.decompose_symm_zero, SSet.OneTruncationβ‚‚.nerveEquiv_symm_apply_obj, ArchimedeanOrder.of_symm_eq, AddEquiv.symm_addMonoidHomCongrRightEquiv, measurable_piEquivPiSubtypeProd_symm, removeNone_aux_inv, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, AffineBasis.reindex_apply, Multiset.coeEquiv_symm_apply_fst, EquivLike.self_comp_coe_symm, subtypeOrEquiv_symm_inr, algebraMap_def, PresentedGroup.equivPresentedGroup_symm_apply_of, CochainComplex.fromSingleβ‚€Equiv_symm_apply_f_zero, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, CategoryTheory.Iso.homCongr_symm, AlgEquiv.piCongrLeft_symm_apply, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, measurable_piCurry_symm, WithCStarModule.equiv_symm_add, AlgebraicGeometry.AffineSpace.homOfVector_toSpecMvPoly, Finsupp.curryEquiv_symm_apply, CategoryTheory.conjugateIsoEquiv_symm_apply_inv, Matrix.comp_symm_transpose, SSet.stdSimplex.spineId_vertex, Specialization.toEquiv_symm, divLeftβ‚€_symm_apply, Fin.equivSubtype_symm_apply, HahnModule.support_smul_subset_vadd_support, Finset.subset_map_symm, DFA.evalFrom_reindex, CategoryTheory.Adjunction.homEquiv_naturality_left_symm, comp_symm_eq, InfHom.symm_dual_id, CategoryTheory.Groupoid.isoEquivHom_symm_apply_inv, piCongrLeft'_symm_apply, AlgebraicGeometry.SpecToEquivOfLocalRing_symm_apply, CategoryTheory.ShiftedHom.opEquiv_symm_apply, FirstOrder.Language.Theory.CompleteType.mem_typeOf, Subgroup.IsComplement'.QuotientMulEquiv_symm_apply, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, AlgebraicGeometry.affineOpensRestrict_symm_apply_coe, CategoryTheory.Adjunction.homEquiv_counit, Affine.Simplex.mongePlane_reindex, addLeft_symm_apply, SSet.S.equivElements_symm_apply_simplex, TopologicalSpace.IrreducibleCloseds.equivSubtype_symm_apply, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, PiTensorProduct.map_reindex, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, MvPolynomial.finSuccEquiv_rename_finSuccEquiv, symmEquiv_symm_apply_symm_apply, AddSubgroup.quotientEquivProdOfLE'_symm_apply, RootPairing.Hom.coroot_coweightMap_apply, PartENat.withTopEquiv_symm_coe, simpleGraph_apply, WithTop.ofDual_symm_apply, CategoryTheory.Presheaf.coconeOfRepresentable_ΞΉ_app, Topology.WithUpperSet.ofUpperSet_symm, LinearAlgebra.FreeProduct.lift_symm_apply, DomMulAct.isOpenEmbedding_mk_symm, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit, Action.diagonalSuccIsoTensorDiagonal_hom_hom, CategoryTheory.Limits.IsColimit.ΞΉ_app_homEquiv_symm_assoc, HahnModule.of_symm_zero, QuaternionAlgebra.imJ_equivProd_symm_apply, CategoryTheory.Functor.curryingFlipEquiv_symm_apply_obj_obj, CategoryTheory.conjugateEquiv_adjunction_id_symm, CategoryTheory.LiftRightAdjoint.constructRightAdjointEquiv_symm_apply, finRotate_symm_lt_iff_ne_zero, MulEquiv.withZero_symm_apply_apply, OrderHom.dual_symm_apply_coe, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, MulEquiv.op_symm_apply_symm_apply, AlgEquiv.arrowCongr_symm, AddEquiv.toMultiplicativeLeft_symm_apply_apply, CategoryTheory.ShrinkHoms.comp_def, finSumNatEquiv_symm_apply_of_ge, WithBot.toDual_symm_apply, Matrix.mulVecLin_reindex, AlgEquiv.op_symm_apply_apply, SSet.op_map, DomMulAct.symm_mk_inv, FirstOrder.Language.BoundedFormula.mapTermRelEquiv_symm_apply, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_app_apply, Perm.subtypeEquivSubtypePerm_symm_apply, MeasureTheory.continuous_diracProbaEquivSymm, piCurry_symm_apply, AlternatingMap.domDomCongrβ‚—_symm_apply, FreeAddMonoid.map_apply_map_symm_eq, PadicInt.continuousAddCharEquiv_symm_apply, optionSubtype_symm_apply_apply_some, ContinuousMultilinearMap.domDomCongrEquiv_symm_apply, FintypeCat.uSwitchEquiv_symm_naturality, Quaternion.imI_equivProd_symm_apply, CategoryTheory.Discrete.equivOfEquivalence_symm_apply, CategoryTheory.ShrinkHoms.inverse_map, Algebra.TensorProduct.liftEquiv_symm_apply_coe, funUnique_symm_apply, Ordinal.to_leftMoves_one_toPGame_symm, CategoryTheory.Meq.equiv_symm_eq_apply, BotHom.symm_dual_comp, zmultiplesHom_symm_apply, Rack.act'_symm_apply, PEquiv.transpose_toMatrix_toPEquiv_apply, finTwoArrowEquiv'_sum_eq, Cubic.equiv_symm_apply_d, DomMulAct.symm_mk_mul, one_def, HVertexOperator.coeff_apply_apply, Perm.decomposeOption_symm_apply, prodCongrRight_symm, WithCStarModule.equiv_symm_fst, QuaternionAlgebra.imI_equivProd_symm_apply, Homeomorph.homeomorph_mk_coe_symm, vadd_def, AddMonoidHom.mulOp_symm_apply_apply, Fin.appendEquiv_symm_apply, eq_symm_iff_trans_eq_refl, Finset.symInsertEquiv_symm_apply_coe, CategoryTheory.coyonedaEquiv_symm_map, CategoryTheory.PreZeroHypercover.interFst_hβ‚€, CategoryTheory.Adjunction.homEquiv_naturality_right_square, PowerBasis.liftEquiv'_symm_apply_apply, PiTensorProduct.lift_comp_reindex_symm, CategoryTheory.PreOneHypercover.inter_p₁, LinearEquiv.coe_toEquiv_symm, Finsupp.optionEquiv_symm_apply, CategoryTheory.GrothendieckTopology.yonedaULiftEquiv_symm_map, Quiver.starEquivCostar_symm_apply_snd, Finsupp.equivFunOnFinite_symm_single, finSuccEquiv'_symm_some, subset_symm_image, SymAlg.unsym_symm, div_def, PrimeSpectrum.primeSpectrumProd_symm_inl_asIdeal, FreeAddMonoid.toList_symm, preimage_piEquivPiSubtypeProd_symm_pi, DomAddAct.vadd_apply, HahnModule.coeff_smul_left, psigmaCongrRight_symm, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, cast_symm, Finsupp.equivFunOnFinite_symm_sum, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, sigmaPreimageEquiv_symm_apply_fst, IsArtinianRing.primeSpectrumEquivMaximalSpectrum_symm_comp_asIdeal, Matroid.mapEquiv_isBasis_iff, MulEquiv.coe_toEquiv_symm, AddValuation.toValuation_symm_eq, ofLeftInverseOfCardLE_symm_apply, piCongrLeft'_symm_apply_apply, CategoryTheory.Pretriangulated.preadditiveYoneda_shiftMap_apply, CategoryTheory.GrothendieckTopology.uliftYonedaEquiv_symm_naturality_right, biInf_comp, stdSimplexEquivIcc_symm_apply_coe, pprodEquivProdPLift_symm_apply, LinearEquiv.symmEquiv_symm_apply_symm_apply, CategoryTheory.evalEquiv_symm_apply, CategoryTheory.Adjunction.representableBy_homEquiv, WithCStarModule.equivL_symm_apply, sigmaFiberEquiv_symm_apply_fst, CategoryTheory.Functor.CorepresentableBy.homEquiv_symm_comp, ContinuousMap.unitsLift_symm_apply_apply_inv', MulEquiv.op_symm_apply_apply, DomMulAct.isEmbedding_mk_symm, coe_notMemRangeEquiv_symm, YoungDiagram.equivListRowLens_symm_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_left, CategoryTheory.HomOrthogonal.matrixDecomposition_symm_apply, Abelianization.lift_symm_apply, Setoid.quotientKerEquivOfRightInverse_symm_apply, PiTensorProduct.map_comp_reindex_eq, WeakDual.CharacterSpace.equivAlgHom_symm_coe, CategoryTheory.Localization.Construction.objEquiv_symm_apply, Multiset.consEquiv_symm_none, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, CategoryTheory.Limits.IsLimit.homEquiv_symm_naturality, self_comp_ofInjective_symm, CategoryTheory.conjugateIsoEquiv_symm_apply_hom, Subgroup.quotientEquivSigmaZMod_symm_apply, MonoidHom.toAdditiveLeft_symm_apply_apply, addEquiv_symm_apply, Finmap.keysLookupEquiv_symm_apply_lookup, Finsupp.mapDomain.linearEquiv_symm, Cubic.equiv_symm_apply_a, MvPolynomial.degreeOf_eq_natDegree, prodPProd_symm_apply, UniformEquiv.uniformEquiv_mk_coe_symm, subtypeEquivCodomain_symm_apply_ne, functionSwap_symm_apply, AddValuation.ofValuation_symm_eq, CategoryTheory.Adjunction.homEquiv_naturality_right_square_assoc, CategoryTheory.Under.postAdjunctionRight_counit_app_right, Specialization.ofEquiv_symm, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, Matrix.coe_ofLinearEquiv_symm, CategoryTheory.unitCompPartialBijectiveAux_symm_apply, WithConv.symm_equiv_apply, MonoidAlgebra.mapDomainAddEquiv_apply, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv_symm_ΞΉ_apply, subtypeSubtypeEquivSubtypeInter_symm_apply_coe_coe, WithBot.toDual_symm, Multiset.coeEquiv_symm_apply_snd_val, Perfection.lift_symm_apply, CategoryTheory.Bicategory.Adjunction.homEquiv₁_symm_apply, CategoryTheory.Discrete.equivalence_inverse, CategoryTheory.Limits.IsColimit.ΞΉ_app_homEquiv_symm, extend_apply, isOpenMap_symm_iff, NumberField.canonicalEmbedding_eq_basisMatrix_mulVec, sigmaFiberEquiv_symm_apply_snd_coe, InverseSystem.invLimEquiv_symm_apply_coe, CategoryTheory.Limits.Cofork.IsColimit.homIso_symm_apply, CategoryTheory.Limits.SingleObj.Types.sections.equivFixedPoints_symm_apply_coe, OrderHom.equivFunctor_symm_apply, Function.OfArity.curry_two_eq_curry, symm_eq_iff_trans_eq_refl, sumArrowEquivProdArrow_symm_apply_inl, LieAlgebra.of_symm_add, Combinatorics.Subspace.reindex_isMono, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, CategoryTheory.opEquiv_symm_apply, Fin.revPerm_symm_apply, Quaternion.equivTuple_symm_apply, Unitization.starLift_symm_apply, equivTangentBundleProd_symm_apply_proj, CategoryTheory.Adjunction.homEquiv_symm_rightAdjointUniq_hom_app, CategoryTheory.Abelian.Ext.homEquivβ‚€_symm_apply, CategoryTheory.Bicategory.conjugateEquiv_symm_apply', subRight_symm_apply, Matrix.comp_symm_apply, RootPairing.Equiv.id_indexEquiv_symm_apply, SupHom.dual_symm_apply_toFun, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.Adjunction.homAddEquiv_symm_sub, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, MulEquiv.monoidHomCongrRightEquiv_symm_apply, MulEquiv.subgroupMap_symm_apply, Quiver.SingleObj.toPrefunctor_symm_comp, mulRight_symm_apply, subtypeSubtypeEquivSubtype_symm_apply_coe_coe, sumIsRight_symm_apply_coe, FirstOrder.Language.LEquiv.onSentence_symm_apply, image_symm_apply_coe, FreeMonoid.freeMonoidCongr_symm_of, Matrix.invertibleEquivDetInvertible_symm_apply, CategoryTheory.sheafHomSectionsEquiv_symm_apply_coe_apply, Perm.SameCycle.symm_apply_left, TrivSqZeroExt.liftEquiv_symm_apply_coe, boolNot_symm_apply, Trunc.finChoiceEquiv_symm_apply, Matrix.submatrixEquivInvertibleEquivInvertible_symm_apply, MvPolynomial.renameEquiv_symm, finSumNatEquiv_symm_apply_of_lt, mulEquiv_symm_apply, Set.powersetCard.mem_range_ofFinEmbEquiv_symm_iff_mem, CategoryTheory.map_shrinkYonedaEquiv, PEquiv.mul_toMatrix_toPEquiv, EquivFunctor.mapEquiv_symm_apply, Quiver.SingleObj.toPrefunctor_symm_apply, Perm.perm_inv_mapsTo_iff_mapsTo, Perm.perm_symm_on_of_perm_on_finite, Perm.sameCycle_symm_apply_left, Finsupp.equivFunOnFinite_symm_eq_sum, AlgEquiv.funUnique_symm_apply, conj_apply, CategoryTheory.Adjunction.homEquiv_apply_eq, CategoryTheory.yonedaEquiv_symm_map, FreeMonoid.map_symm_apply_map_eq, psigmaEquivSigmaPLift_symm_apply, Magma.AssocQuotient.lift_symm_apply, rightInverse_symm, LinearEquiv.piCongrLeft'_apply, AddEquiv.symm_mk, ofUnique_symm_apply, WithCStarModule.equiv_symm_pi_apply, prodSumDistrib_symm_apply_left, optionSubtype_symm_apply_symm_apply, finSuccAboveOrderIso_symm_apply_ne_last, NumberField.Units.regulator_eq_det', CategoryTheory.uliftCoyonedaEquiv_symm_map, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.yonedaEquiv_symm_naturality_left, Invertible.mulRight_symm_apply, Affine.Simplex.height_reindex, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, Metric.PiNatEmbed.toPiNatEquiv_symm_apply, CategoryTheory.PreZeroHypercover.isoMk_inv_hβ‚€, DirectSum.decompose_symm_of, Finset.orderIsoColex_symm_apply, Preorder.piCongrLeft_comp_restrictLe, SetTheory.PGame.Relabelling.mk'_leftMovesEquiv, sigmaPUnit_symm_apply_fst, ExteriorAlgebra.invertibleAlgebraMapEquiv_symm_apply_invOf_toQuot, GrpCat.SurjectiveOfEpiAuxs.Ο„_symm_apply_fromCoset, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor', Diffeomorph.toEquiv_coe_symm, CategoryTheory.yonedaEquiv_symm_naturality_right, RelIso.preimage_symm_apply, Matroid.mapSetEquiv_indep_iff, FreeAbelianGroup.liftMonoid_symm_coe, CoalgEquiv.toEquiv_symm, Ctop.ofEquiv_val, subtypeEquiv_symm, subtypePreimage_symm_apply_coe_neg, DomMulAct.symm_mk_zpow, LinearIsometryEquiv.piLpCongrLeft_symm, CategoryTheory.PreZeroHypercover.isoMk_inv_sβ‚€, Matrix.comp_symm_single, Matrix.head_transpose, Ctop.Realizer.ofEquiv_F, CategoryTheory.Functor.partialLeftAdjointHomEquiv_comp_symm, Set.image_equiv_eq_preimage_symm, prodShear_symm_apply, AddEquiv.op_symm_apply_apply, apply_ofInjective_symm, SSet.stdSimplex.objEquiv_symm_apply, CompleteLatticeHom.symm_dual_comp, AlgebraicGeometry.pointEquivClosedPoint_symm_apply_coe, FormalMultilinearSeries.changeOriginSeriesTerm_changeOriginIndexEquiv_symm, Ordinal.toLeftMovesToPGame_symm_lt, symm_image_image, FreeGroup.freeGroupCongr_symm, Topology.WithLower.toLower_symm, CategoryTheory.Limits.biproduct.whiskerEquiv_hom_eq_lift, CategoryTheory.Functor.CoconeTypes.IsColimit.equiv_symm_ΞΉ_apply, CategoryTheory.Limits.PullbackCone.IsLimit.equivPullbackObj_symm_apply_snd, ringEquiv_symm_apply, equivShrink_symm_mul, subtypeSubtypeEquivSubtypeExists_symm_apply_coe_coe, CategoryTheory.uliftYonedaEquiv_symm_map_assoc, Finset.prod_map_equiv, SetTheory.PGame.moveLeft_nim, CategoryTheory.Functor.curryingEquiv_symm_apply_obj_map, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f_aux, Set.Finite.subtypeEquivToFinset_symm_apply_coe, AlgEquiv.prodCongr_symm_apply, Algebra.GrothendieckAddGroup.lift_symm_apply, DomAddAct.isEmbedding_mk_symm, equivEquivIso_inv, Set.union_symm_apply_right, Set.matrix_eq_pi, rootsOfUnityEquivNthRoots_symm_apply, AlgHom.op_symm_apply_apply, symm_toPartialEquiv, Monoid.PushoutI.NormalWord.summand_smul_def, AddMonoidAlgebra.symm_mapDomainAddEquiv, SemidirectProduct.equivProd_symm_apply_left, Perm.val_inv_equivUnitsEnd_apply, Function.update_apply_equiv_apply, SSet.stdSimplex.nonDegenerateEquiv_symm_apply_coe, CategoryTheory.Adjunction.rightAdjointOfEquiv_map, Opposite.equivToOpposite_symm_coe, LieAlgebra.of_symm_smul, SymAlg.sym_symm, MvPolynomial.mapEquivMonic_symm_map_algebraMap, Matrix.reindex_updateCol, symm_divLeft, CategoryTheory.Bicategory.conjugateEquiv_symm_apply, DirectSum.decompose_symm_sum, List.Nodup.getEquiv_symm_apply_val, sumCompl_symm_apply_of_neg, NumberField.Units.regOfFamily_eq_det', Affine.Simplex.excenter_reindex, CochainComplex.toSingleβ‚€Equiv_symm_apply_f_zero, ContinuousMultilinearMap.curryFinFinset_apply, DomAddAct.isClosedEmbedding_mk_symm, Filter.map_equiv_symm, Set.sumCompl_symm_apply_compl, subtypePreimage_symm_apply_coe, image_symm_eq_preimage, UniformEquiv.piCongrLeft_apply, ModuleCat.freeHomEquiv_symm_apply, finsetCongr_symm, equivShrink_symm_inv, SeparationQuotient.liftNormedAddGroupHomEquiv_symm_apply_coe, Orientation.reindex_symm, SimpleGraph.Iso.connectedComponentEquiv_symm, AlgEquiv.piCongrLeft'_symm_apply, ChainComplex.fromSingleβ‚€Equiv_symm_apply_f_succ, PartENat.withTopEquiv_symm_lt, WithLp.congr_symm, ContinuousMap.addUnitsLift_symm_apply_apply_neg', Affine.Simplex.reindex_symm_reindex, curry_symm_apply, CategoryTheory.Presieve.compatibleEquivGenerateSieveCompatible_symm_apply_coe, piFinTwoEquiv_symm_apply, sigmaSubtype_symm_apply_coe_fst, PartENat.withTopEquiv_symm_top, symm_image_subset, optionSubtypeNe_symm_self, Quotient.finChoiceEquiv_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_inv, CategoryTheory.Subfunctor.Subpresheaf.ofSection_eq_range, Combinatorics.Subspace.reindex_apply, Finsupp.restrictSupportEquiv_symm_apply_coe, equivShrink_symm_one, CategoryTheory.Pi.equivalenceOfEquiv_functor, MulEquiv.monoidHomCongrLeftEquiv_symm_apply, Shrink.linearEquiv_apply, piUnique_symm_apply, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp_assoc, finEquivPowers_symm_apply, CategoryTheory.Limits.Types.colimitEquivColimitType_symm_apply, Valuation.ofAddValuation_symm_eq, List.Nodup.getEquivOfForallMemList_symm_apply_val, CategoryTheory.GradedObject.comapEquiv_functor, algEquiv_symm_apply, OrthonormalBasis.repr_reindex, NormedAddGroupHom.Equalizer.liftEquiv_symm_apply_coe, TopologicalSpace.IrreducibleCloseds.equivSubtype'_symm_apply, CategoryTheory.Limits.IsTerminal.from_eq_liftConeMorphism, EquivLike.coe_symm_comp_self, DFinsupp.equivFunOnFintype_symm_single, prod_assoc_symm_preimage, Topology.WithLawson.of_Lawson_symm_eq, Module.Basis.reindex_apply, WType.NatΞ±EquivPUnitSumPUnit_symm_apply, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, Module.Basis.repr_reindex_apply, OrderMonoidIso.toEquiv_symm, setCongr_symm_apply, HahnSeries.iterateEquiv_symm_apply, Matroid.mapEquiv_isBase_iff, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, NumberField.house.basis_repr_norm_le_const_mul_house, comp_equiv_symm_dotProduct, CategoryTheory.Limits.Multifork.toSections_fac, equivShrink_symm_neg, WithCStarModule.equiv_symm_zero, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, finFunctionFinEquiv_symm_apply_val, ofFiberEquiv_symm_apply, finSuccEquiv'_symm_some_above, Additive.ofMul_symm_eq, SimpleGraph.Iso.mapEdgeSet_symm_apply, symm_trans_self, AlternatingMap.domDomCongrEquiv_symm_apply, SSet.Subcomplex.PairingCore.pairing_p_symm_equivI, Algebra.PreSubmersivePresentation.reindex_map, CategoryTheory.Cat.Hom.equivFunctor_symm_apply, ofBoolRing_symm_eq, DomAddAct.comap_mk_nhds, RingHom.equivRatAlgHom_symm_apply, Set.sumCompl_symm_apply_of_notMem, finSuccEquivLast_symm_some, Perm.set_support_symm_eq, MvPolynomial.mapEquivMonic_symm_map, toFun_inducedStructureEquiv_Symm, CategoryTheory.CartesianMonoidalCategory.homEquivToProd_symm_apply, DomAddAct.symm_mk_zero, WithLp.equiv_symm_apply_ofLp, equivShrink_symm_smul, SSet.stdSimplex.face_singleton_compl, Matrix.compAddEquiv_symm_apply, Fintype.finsetEquivSet_symm_apply, Fin.snocEquiv_symm_apply, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, FirstOrder.Language.Formula.realize_equivSentence_symm, ofPreimageEquiv_symm_apply, ContinuousAlternatingMap.ofSubsingleton_symm_apply_apply, Topology.WithGeneratedByTopology.isClosed_iff, Finset.sigmaAntidiagonalEquivProd_symm_apply_fst, CategoryTheory.Pseudofunctor.StrongTrans.Modification.equivOplax_symm_apply, AddSubmonoid.equivOp_symm_apply_coe, RootPairing.equiv_of_mapsTo_symm_apply, MultilinearMap.ofSubsingletonβ‚—_symm_apply, CategoryTheory.shrinkYonedaEquiv_symm_map, toIso_inv, Filter.comap_equiv_symm, CategoryTheory.Adjunction.homEquiv_symm_apply, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, GradedRing.proj_recompose, TopologicalSpace.Compacts.equiv_symm, Perm.decomposeFin_symm_apply_zero, AlgebraicGeometry.Spec.homEquiv_symm_apply, SimpleGraph.Iso.comap_symm_apply, Affine.Simplex.reindex_reindex_symm, SetTheory.PGame.toRightMovesNim_symm_lt, QuaternionAlgebra.coe_symm_addEquivTuple, AddChar.coe_toMonoidHomEquiv_symm, CategoryTheory.CategoryOfElements.toCostructuredArrow_map, Int.divModEquiv_symm_apply, CategoryTheory.GrothendieckTopology.yonedaEquiv_symm_naturality_right, DirectSum.IsInternal.subordinateOrthonormalBasisIndex_def, Matrix.isUnit_comp_symm_iff, eq_symm_apply, RingEquiv.prodCongr_symm_apply, setSubtypeComm_symm_apply, CategoryTheory.nerve.edgeMk_surjective, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, DomAddAct.isInducing_mk_symm, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, Set.opEquiv_symm_apply, CategoryTheory.Adjunction.equivHomsetRightOfNatIso_symm_apply, optionCongr_symm, trans_eq_refl_iff_eq_symm, Fin.insertNth_apply_cycleRange_symm, Finsupp.lcongr_apply_apply, CategoryTheory.Functor.IsCoverDense.restrictHomEquivHom_naturality_left_symm, SemidirectProduct.equivProd_symm_apply_right, sumCompl_symm_apply_of_pos, some_removeNone_iff, Topology.WithLowerSet.ofLowerSet_symm, CategoryTheory.shrinkYonedaEquiv_shrinkYoneda_map, CategoryTheory.Adjunction.CoreHomEquivUnitCounit.homEquiv_counit, AffineEquiv.ofBijective.symm_eq, Finsupp.equivFunOnFinite_symm_apply_apply, addLeft_symm, SetTheory.PGame.toLeftMovesNim_one_symm, listUniqueEquiv_symm_apply, HahnModule.of_symm_sub, CategoryTheory.ShiftedHom.opEquiv'_add_symm, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap, CStarMatrix.toCLM_apply_single_apply, CategoryTheory.Functor.functorHomEquiv_symm_apply_app_app, piCongrLeft'_apply, MulEquiv.withZero_symm_apply_symm_apply, CategoryTheory.Equivalence.induced_counitIso, AddChar.coe_toAddMonoidHomEquiv_symm, AddSubgroup.equivOp_symm_apply_coe, invertibleEquivOfLeftInverse_symm_apply, CategoryTheory.Limits.Types.isLimitEquivSections_symm_apply, DFinsupp.domLCongr_apply, Polynomial.UniversalFactorizationRing.fromTensor_comp_universalFactorizationMap', LinearEquiv.funCongrLeft_symm, RootPairing.Hom.id_indexEquiv_symm_apply, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_map, pprodEquivProd_symm_apply, Fin2.equivFin_symm_apply, CategoryTheory.yonedaEquiv_symm_app_apply, CategoryTheory.Arrow.equivSigma_symm_apply_right, sInfHom.symm_dual_id, CategoryTheory.tensorLeftHomEquiv_symm_naturality, DFinsupp.sigmaFinsetFunEquiv_apply_snd_coe, CategoryTheory.nerve.homEquiv_symm_apply, Set.mem_image_equiv, Algebra.discr_reindex, MeasurableEquiv.piFinSuccAbove_apply, Ordinal.toPGame_moveLeft', CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg, LocallyConstant.congrRight_symm_apply, CategoryTheory.ShiftedHom.opEquiv_symm_comp, SkewMonoidAlgebra.lift_symm_apply, CategoryTheory.Limits.compYonedaSectionsEquiv_symm_apply_coe, LinearMap.IsSymmetric.eigenvectorBasis_def, piCongrSet_symm_apply, apply_eq_iff_eq_symm_apply, KummerDedekind.normalizedFactorsMapEquivNormalizedFactorsMinPolyMk_symm_apply_eq_span, CategoryTheory.unitCompPartialBijective_symm_apply, Function.fromTypes_nil_equiv_symm_apply, MeasureTheory.SignedMeasure.toJordanDecompositionEquiv_symm_apply, uliftZMultiplesHom_symm_apply, SetTheory.PGame.moveLeft_neg, psigmaEquivSigma_symm_apply

Equiv.Computable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalEquiv.ComputableEquiv.symmβ€”β€”

Equiv.Perm.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Equiv.Perm.Disjointβ€”β€”β€”

Equiv.Perm.SameCycle

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Equiv.Perm.SameCycleβ€”β€”zpow_neg
Equiv.symm_apply_apply

Equiv.Perm.subtypeCongr

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Equiv.symm
Equiv.Perm.subtypeCongr
β€”β€”

Equiv.subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”β€”β€”β€”Function.Injective.subsingleton
Equiv.injective

Ergodic

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalErgodic
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symmβ€”MeasureTheory.MeasurePreserving.symm
toMeasurePreserving
PreErgodic.aeconst_set
toPreErgodic
MeasurableEquiv.image_eq_preimage_symm
MeasurableEquiv.preimage_image

EuclideanGeometry.Sphere.IsDiameter

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”EuclideanGeometry.Sphere.IsDiameterβ€”β€”right_mem
RCLike.charZero_rclike
midpoint_eq_center
midpoint_comm

EuclideanGeometry.Sphere.IsExtTangent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”EuclideanGeometry.Sphere.IsExtTangentβ€”β€”EuclideanGeometry.Sphere.IsExtTangentAt.symm

EuclideanGeometry.Sphere.IsExtTangentAt

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”EuclideanGeometry.Sphere.IsExtTangentAtβ€”β€”mem_right
mem_left
Wbtw.symm
Real.instIsOrderedRing
wbtw

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Filter.EventuallyEqβ€”β€”Filter.Eventually.mono

Finmap.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Finmap.Disjointβ€”β€”β€”

FirstOrder.Language.ElementarilyEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”FirstOrder.Language.ElementarilyEquivalentβ€”β€”β€”

FirstOrder.Language.Equiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
15 mathmath: symm_apply_apply, self_comp_symm_toHom, self_comp_symm, symm_bijective, symm_comp_self, apply_symm_apply, symm_comp_self_toHom, comp_symm, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, self_comp_symm_toEmbedding, symm_symm, FirstOrder.Language.PartialEquiv.symm_apply, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, symm_comp_self_toEmbedding, Equiv.toFun_inducedStructureEquiv_Symm

FirstOrder.Language.FGEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
1 mathmath: symm_coe

FirstOrder.Language.LEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
5 mathmath: FirstOrder.Language.addEmptyConstants_symm_isExpansionOn, symm_toLHom, symm_invLHom, onBoundedFormula_symm, onFormula_symm

FirstOrder.Language.PartialEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
7 mathmath: monotone_symm, symm_symm, symm_bijective, symm_le_iff, symm_le_symm, symm_apply, FirstOrder.Language.FGEquiv.symm_coe

FirstOrder.Language.Theory.Iff

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”FirstOrder.Language.Theory.Iffβ€”β€”FirstOrder.Language.BoundedFormula.realize_iff

Function.Commute

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Function.Commuteβ€”β€”β€”

GenLoop.Homotopic

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”GenLoop.Homotopicβ€”ContinuousMap.HomotopicRel.symm

Graph.Adj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Graph.Adjβ€”β€”Graph.IsLink.symm

Graph.IsLink

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Graph.IsLinkβ€”β€”Graph.isLink_symm
edge_mem

GroupExtension.Equiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_symm_apply, coe_symm, refl_symm_apply, trans_symm_apply

GroupExtension.IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”GroupExtension.IsConjβ€”β€”map_inv
MonoidHom.instMonoidHomClass
neg_add_cancel
zpow_zero
one_mul
mul_one
neg_neg
zpow_one
Mathlib.Tactic.Group.zpow_trick_one'

Homeomorph

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
180 mathmath: smulOfNeZero_symm_apply, TopCat.isoOfHomeo_inv, Trivialization.preimageHomeomorph_symm_apply, Topology.IsGeneratedBy.homeomorph_symm_coe, AlgebraicGeometry.coprodSpec_apply, finTwoArrow_symm_apply, IsCoveringMapOn.homeomorph_comp_iff, vadd_symm_apply, stdSimplexHomeomorphUnitInterval_symm_apply_coe, Sequential.homeoOfIso_symm_apply, LocallyConstant.congrLeftRingEquiv_apply_apply, TopCat.uliftFunctorObjHomeo_symm_naturality_apply, OpenPartialHomeomorph.transHomeomorph_symm_apply, DomMulAct.coe_mkHomeomorph_symm, LinearIsometryEquiv.coe_symm_toHomeomorph, OpenPartialHomeomorph.transHomeomorph_target, shearAddRight_symm_coe, piCongrLeft_symm_apply, Equiv.toHomeomorphOfIsInducing_symm_apply, LinearIsometryEquiv.toHomeomorph_symm, Topology.IsQuotientMap.lift_apply, AddCircle.homeomorphCircle'_symm_apply, funSplitAt_symm_apply, opensCongr_apply, coe_symm_toEquiv, NumberField.mixedEmbedding.polarSpaceCoord_target, self_trans_symm, Topology.IsQuotientMap.homeomorph_symm_apply, affineHomeomorph_symm_apply, DilationEquiv.coe_symm_toHomeomorph, OpenPartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv_symm_apply, OpenPartialHomeomorph.homeomorphOfImageSubsetSource_symm_apply, continuousMapCongr_symm_apply, AlgebraicGeometry.Scheme.homeoOfIso_symm, continuousMapCongr_apply, Real.sinhHomeomorph_symm_apply, CompHausLike.homeoOfIso_symm_apply, sumProdDistrib_symm_apply, subtype_symm_apply_coe, LocallyConstant.congrLeftₐ_apply_apply, symm_toHomotopyEquiv, isBigOWith_congr, smul_symm_apply, symm_inv, Equiv.symm_toHomeomorph, Set.univ_symm_apply_coe, piSplitAt_symm_apply, subLeft_symm_apply, ContinuousMap.homeoFnOfDiscrete_symm_apply, sumArrowHomeomorphProdArrow_symm_apply, Nonneg.val_unitsHomeomorphPos_symm_apply_coe, EReal.expHomeomorph_symm, addRight_symm, Sequential.isoOfHomeo_inv, Equiv.toHomeomorphOfContinuousOpen_symm_apply, preimage_symm, TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage, divRight_symm_apply, Nonneg.val_inv_unitsHomeomorphPos_symm_apply_coe, CommRingCat.HomTopology.precompHomeomorph_symm_apply, DilationEquiv.toHomeomorph_symm, Bundle.Trivial.homeomorphProd_symm_apply_snd, contDiff_symm, TopologicalSpace.Compacts.equiv_symm_apply, CompactlyGenerated.isoOfHomeo_inv, comap_nhds_eq, continuous_symm, CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, image_symm, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, continuousMapOfUnique_symm_apply, unitInterval.symmHomeomorph_symm_apply, homeomorphUnitSphereProd_symm_apply_coe, vaddConst_symm_apply, onePointCongr_symm_apply, sumComm_symm, mulLeftβ‚€_symm_apply, isBigO_congr, homeomorphSphereProd_symm_apply_coe, opensCongr_symm, ContinuousLinearEquiv.coe_symm_toHomeomorph, prodUnique_symm_apply_snd, symm_neg, shearMulRight_symm_coe, addLeft_symm, CompactlyGenerated.homeoOfIso_symm_apply, piCongrRight_symm, image_symm_apply_coe, GenLoop.loopHomeo_symm_apply, NumberField.mixedEmbedding.polarCoord_symm_eq, Equiv.toHomeomorphOfContinuousClosed_symm_apply, Set.prod_symm_apply_coe, Function.RightInverse.homeomorph_symm_apply, homeomorphOfUnique_symm_apply, AlexDisc.Iso.mk_inv, IsHomeomorph.homeomorph_symm_apply, uniqueProd_symm_apply_snd, piCurry_symm_apply, image_eq_preimage_symm, sigmaProdDistrib_symm_apply, toContinuousMap_comp_symm, ContinuousMap.sigmaCodHomeomorph_symm_apply, subRight_symm_apply, Bundle.Trivial.homeomorphProd_symm_apply_proj, self_comp_symm, iccHomeoI_symm_apply_coe, Equiv.toHomeomorph_symm, tangentBundleModelSpaceHomeomorph_coe_symm, LocallyConstant.congrLeftβ‚—_apply_apply, Trivialization.preimageSingletonHomeomorph_symm_apply, DomAddAct.coe_mkHomeomorph_symm, toMeasurableEquiv_symm_coe, piUnique_symm_apply, piEquivPiSubtypeProd_symm_apply, ENNReal.logHomeomorph_symm, MulOpposite.opHomeomorph_symm_apply, Diffeomorph.symm_toHomeomorph, divLeft_symm_apply, toOpenPartialHomeomorphOfImageEq_symm_apply, ContinuousLinearEquiv.toHomeomorph_symm, sumSumSumComm_symm, Trivialization.sourceHomeomorphBaseSetProd_symm_apply, symm_toPartialHomeomorph, transOpenPartialHomeomorph_symm_apply, mulRightβ‚€_symm_apply, toOpenPartialHomeomorph_symm_apply, TopCat.homeoOfIso_symm_apply, symm_apply_eq, CompHausLike.isoOfHomeo_inv_hom_hom_apply, prodProdProdComm_symm, ContinuousMap.homeoFnOfDiscrete_symm_apply_apply, Fin.appendHomeomorph_symm_apply, sumCongr_symm, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, AffineEquiv.coe_toHomeomorphOfFiniteDimensional_symm, homeomorph_mk_coe_symm, contDiff_symm_deriv, apply_symm_apply, symm_trans_self, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_symm_apply, contMDiff_tangentBundleModelSpaceHomeomorph_symm, symm_trans_apply, Metric.Snowflaking.homeomorph_symm_apply, compStarAlgEquiv'_symm_apply, refl_symm, Metric.PiNatEmbed.toPiNatHomeo_symm_apply, symm_apply_apply, ContinuousMulEquiv.coe_toHomeomorph_symm, Topology.IsEmbedding.toHomeomorph_symm_apply, UniformEquiv.toHomeomorph_symm_apply, AffineIsometryEquiv.toHomeomorph_symm, prodCongr_symm, ContinuousAlgEquiv.symm_toHomeomorph, symm_map_nhds_eq, funUnique_symm_apply, symm_bijective, prodComm_symm, mulLeft_symm, symm_comp_self, piFinTwo_symm_apply, symm_comp_toContinuousMap, AlgebraicGeometry.Scheme.Hom.fiberΞΉ_fiberHomeo_symm, OrderIso.coe_toHomeomorph_symm, symm_toOpenPartialHomeomorph, isLittleO_congr, AffineIsometryEquiv.coe_symm_toHomeomorph, IsometryEquiv.coe_toHomeomorph_symm, IsCoveringMapOn.homeomorph_comp, mulRight_symm, Diffeomorph.coe_toHomeomorph_symm, AddOpposite.opHomeomorph_symm_apply, TopologicalSpace.Compacts.equiv_symm, LocallyConstant.congrLeft_apply, OpenPartialHomeomorph.toHomeomorphSourceTarget_symm_apply_coe, ModelWithCorners.toHomeomorph_symm_apply, symm_symm, AddCircle.homeomorphAddCircle_symm_apply_mk, ContinuousAddEquiv.coe_toHomeomorph_symm, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, unitBall_symm_apply

HomotopicalAlgebra.Cylinder

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
8 mathmath: instIsGoodSymmOfRespectsIsoCofibrations, symm_i₁, symm_i, symm_Ο€, symm_iβ‚€, instIsVeryGoodSymmOfRespectsIsoCofibrations, symm_i_assoc, symm_I

HomotopicalAlgebra.Cylinder.LeftHomotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

HomotopicalAlgebra.LeftHomotopyRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”HomotopicalAlgebra.LeftHomotopyRelβ€”β€”HomotopicalAlgebra.Cylinder.LeftHomotopy.leftHomotopyRel

HomotopicalAlgebra.PathObject

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
8 mathmath: symm_p₁, symm_pβ‚€, symm_p_assoc, symm_p, instIsVeryGoodSymmOfRespectsIsoFibrations, symm_ΞΉ, symm_P, instIsGoodSymmOfRespectsIsoFibrations

HomotopicalAlgebra.PathObject.RightHomotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

HomotopicalAlgebra.Precylinder

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
7 mathmath: symm_iβ‚€, symm_i_assoc, symm_Ο€, symm_i₁, LeftHomotopy.symm_h, symm_I, symm_i

HomotopicalAlgebra.Precylinder.LeftHomotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
1 mathmath: symm_h

HomotopicalAlgebra.PrepathObject

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
7 mathmath: symm_p, symm_ΞΉ, symm_p₁, symm_P, symm_p_assoc, symm_pβ‚€, RightHomotopy.symm_h

HomotopicalAlgebra.PrepathObject.RightHomotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
1 mathmath: symm_h

HomotopicalAlgebra.RightHomotopyRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”HomotopicalAlgebra.RightHomotopyRelβ€”β€”HomotopicalAlgebra.PathObject.RightHomotopy.rightHomotopyRel

Homotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
1 mathmath: symm_hom

HomotopyEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

IncompRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IncompRelβ€”β€”β€”

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Inseparableβ€”β€”β€”

Int.ModEq

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Int.ModEqβ€”β€”β€”

IntermediateField.LinearDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IntermediateField.LinearDisjoint
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
β€”β€”IsScalarTower.left
IntermediateField.isScalarTower_mid'
IntermediateField.linearDisjoint_iff'
Subalgebra.LinearDisjoint.symm

IntervalIntegrable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IntervalIntegrableβ€”β€”β€”

IsBoundedBilinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsBoundedBilinearMapβ€”β€”add_right
smul_right
add_left
smul_left
bound
LE.le.trans_eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul

IsBrauerEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsBrauerEquivalentβ€”β€”β€”

IsChain

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsChainβ€”β€”Set.Pairwise.mono'

IsCompl

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsComplβ€”β€”Disjoint.symm
disjoint
Codisjoint.symm
codisjoint

IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsConjβ€”β€”SemiconjBy.units_inv_symm_left

IsConjRoot

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsConjRootβ€”β€”β€”

IsCoprime

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsCoprimeβ€”β€”add_comm

IsLocalRing.ResidueField.mapEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”RingEquiv.symm
IsLocalRing.ResidueField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Distrib.toAdd
IsLocalRing.ResidueField.mapEquiv
β€”β€”

IsMaxAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsMaxAntichainβ€”β€”IsAntichain.flip
isAntichain

IsMaxChain

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsMaxChainβ€”β€”IsChain.symm
isChain

IsMoritaEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsMoritaEquivalentβ€”β€”Nonempty.map
cond

IsRelPrime

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsRelPrime
CommMonoid.toMonoid
β€”β€”β€”

IsSl2Triple

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalIsSl2TripleNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
LieRing.toAddCommGroup
β€”h_ne_zero
neg_eq_iff_eq_neg
lie_skew
lie_e_f
neg_lie
lie_h_f_nsmul
lie_h_e_nsmul

IsVisible

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”IsVisibleβ€”β€”isVisible_comm

IsometryEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
58 mathmath: LinearIsometryEquiv.coe_symm_toIsometryEquiv, preimage_sphere, toRealLinearIsometryEquiv_symm_apply, apply_symm_apply, withLpUniqueProd_symm_apply, subLeft_symm_apply, toDilationEquiv_symm, preimage_emetric_closedBall, constVSub_symm_apply, addRight_symm, divRight_symm, symm_apply_apply, Fin.appendIsometry_symm_apply, constVAdd_symm, Delone.DeloneSet.mapIsometry_symm_apply_carrier, preimage_emetric_ball, addLeft_symm, divLeft_symm_apply, preimage_closedEBall, Delone.DeloneSet.mapIsometry_symm, subRight_symm, inv_symm, piFinTwo_symm_apply, sumArrowIsometryEquivProdArrow_symm_apply, piCongrLeft_symm_apply, symm_symm, piCongrLeft_apply, Fin.appendIsometryOfEq_symm_apply, withLpProdUnique_symm_apply, piCongrLeft'_symm_apply, symm_apply_eq, constSMul_symm, funUnique_symm_apply, mulRight_symm, coe_symm_toEquiv, eq_symm_apply, image_symm, coe_toRealLinearIsometryEquivOfMapZero_symm, vaddConst_symm_apply, withLpProdComm_symm, neg_symm, symm_bijective, mulLeft_symm, coe_symm_toDilationEquiv, symm_comp_self, withLpProdAssoc_symm_apply, ContinuousMap.isometryEquivBoundedOfCompact_symm_apply, LinearIsometryEquiv.toIsometryEquiv_symm, AffineIsometryEquiv.coe_symm_toIsometryEquiv, withLpProdCongr_symm_apply, preimage_symm, preimage_closedBall, preimage_ball, AffineIsometryEquiv.toIsometryEquiv_symm, coe_toHomeomorph_symm, symm_trans_apply, preimage_eball, self_comp_symm

Joined

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Joinedβ€”β€”

JoinedIn

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”JoinedInβ€”β€”mem
Joined.symm

LieEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
22 mathmath: skewAdjointLieSubalgebraEquiv_symm_apply, LieAlgebra.Extension.toKer_bracket, refl_symm, symm_trans, LieAlgebra.Extension.ringModuleOf_bracket, Matrix.reindexLieEquiv_symm, AlgEquiv.toLieEquiv_symm_apply, Matrix.lieConj_symm_apply, apply_symm_apply, symm_trans_self, symm_apply_apply, LieAlgebra.Extension.bracket, symm_bijective, lieEquivMatrix'_symm_apply, ofSubalgebras_symm_apply, LinearEquiv.lieConj_symm, LieAlgebra.Extension.ringModuleOf_bracket_proj, self_trans_symm, symm_symm, LieAlgebra.Extension.twoCocycleOf_coe_coe, LieAlgebra.Extension.oneCochainOfTwoSplitting_apply, LieModule.toEnd_matrix

LieModuleEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
9 mathmath: symm_trans, apply_eq_iff_eq_symm_apply, symm_apply_apply, symm_symm, LieModule.maxTrivEquiv_of_equiv_symm_eq_symm, symm_bijective, apply_symm_apply, symm_trans_self, self_trans_symm

LinearEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
766 mathmath: DirectSum.IsInternal.ofBijective_coeLinearMap_same, multilinearMapCongrLeft_symm_apply, MultilinearMap.domDomCongrLinearEquiv'_symm_apply, LinearMap.lTensor_ker_subtype_tensorKerEquiv_symm, Rep.resCoindHomEquiv_symm_apply_hom, IsLocalizedModule.iso_symm_apply', Polynomial.degreeLT.addLinearEquiv_symm_apply_inr, TensorProduct.congr_symm, LinearMap.apply_symm_toPerfPair_self, LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff, Submodule.rTensorOne_symm_apply, iSupIndep.linearEquiv_symm_apply, Submodule.topEquiv_symm_apply_coe, PiTensorProduct.lift_reindex, Matrix.toLin'_symm, QuaternionAlgebra.coe_linearEquivTuple_symm, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, Algebra.Presentation.differentials.comm₁₂_single, Pretrivialization.linearEquivAt_symm_apply, Module.Basis.map_equivFun, Submodule.comap_equiv_eq_map_symm, Rep.MonoidalClosed.linearHomEquiv_symm_hom, ofBijective_symm_apply_apply, TensorProduct.AlgebraTensorModule.rid_symm_apply, BilinForm.toMatrix_symm, symm_mem_transvections_iff, AlternatingMap.constLinearEquivOfIsEmpty_symm_apply, PiTensorProduct.tmulEquiv_symm_apply, ContinuousLinearEquiv.toLinearEquiv_symm, dotProductEquiv_symm_apply, addMonoidHomLequivNat_symm_apply, TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_symm, PiTensorProduct.dualDistribEquivOfBasis_symm_apply, Representation.ofMulActionSelfAsModuleEquiv_symm_apply, Module.Basis.equivFun_symm_apply, KaehlerDifferential.polynomialEquiv_symm, TensorProduct.equivFinsuppOfBasisLeft_symm_apply, Module.DualBases.basis_repr_symm_apply, congrRight_symm, Module.Basis.constr_symm_apply, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul', Finsupp.supportedEquivFinsupp_symm_single, PiTensorProduct.lift_reindex_symm, kroneckerTMulAlgEquiv_symm_single_tmul, mk_coe', PiTensorProduct.map_reindex_symm, LieAlgebra.LoopAlgebra.twoCochainOfBilinear_apply_apply, LocalizedModule.restrictScalars_map_eq, Submodule.prodEquivOfIsCompl_symm_apply_snd_eq_zero, ZMod.invDFT_apply, PiTensorProduct.subsingletonEquiv_symm_apply, MulOpposite.coe_opLinearEquiv_symm, Submodule.toLinearEquiv_orthogonalDecomposition, RootPairing.Equiv.coweightEquiv_symm_coweightMap, TensorProduct.piScalarRight_symm_algebraMap, LinearMap.BilinForm.congr_apply, TensorProduct.AlgebraTensorModule.congr_symm, RootPairing.rootSpan_dualAnnihilator_le_ker_rootForm, restrictScalars_symm_apply, KaehlerDifferential.tensorKaehlerEquiv_symm_D_tmul, SpecialLinearGroup.toLinearEquiv_symm_to_linearMap, Matrix.transposeLinearEquiv_symm, domMulActCongrRight_symm_apply, congrQuadraticMap_symm, conj_apply_apply, skewSwap_symm_apply, TensorProduct.AlgebraTensorModule.congr_symm_tmul, Algebra.Presentation.differentials.comm₂₃, conjAlgEquiv_symm_apply_apply, starLinearEquiv_symm_apply, Rep.diagonalHomEquiv_symm_apply, Finsupp.linearEquivFunOnFinite_symm_coe, symm_comp, Module.Dual.eval_comp_comp_evalEquiv_eq, symm_mem_dilatransvections_iff, LinearMap.BilinForm.toMatrix'_symm, Coalgebra.coassoc_symm_apply, LinearMap.baseChange_baseChange, Shrink.linearEquiv_symm_apply, Orientation.map_symm, ULift.moduleEquiv_symm_apply, contractLeft_assoc_coevaluation, cast_symm_apply, ContinuousMultilinearMap.piLinearEquiv_symm_apply, Module.AEval.of_symm_smul, Module.Basis.ofZLatticeComap_apply, IsLocalizedModule.iso_symm_apply, TensorProduct.AlgebraTensorModule.rightComm_symm_tmul, toLinearEquiv_toContinuousLinearEquiv_symm, Algebra.IsPushout.cancelBaseChange_symm_tmul, piFinTwo_symm_apply, comp_toLinearMap_symm_eq, coe_inv, star_dotProduct_toMatrixβ‚‚_mulVec, LocallyConstant.congrRightβ‚—_symm_apply_apply, TensorProduct.quotientTensorQuotientEquiv_symm_apply_mk_tmul, skewAdjointLieSubalgebraEquiv_symm_apply, LinearMap.ringLmapEquivSelf_symm_apply, Matrix.toBilin_symm, comp_symm_cancel_left, Submodule.dualCopairing_eq, KaehlerDifferential.quotKerTotalEquiv_symm_comp_D, Submodule.quotEquivOfEqBot_symm_apply, finsuppTensorFinsupp'_symm_single_eq_tmul_single_one, Module.Relations.Solution.IsPresentation.linearEquiv_symm_var, MulOpposite.coe_opLinearEquiv_symm_addEquiv, SemimoduleCat.hom_inv_rightUnitor, Rep.coinvariantsTensorFreeLEquiv_symm_apply, toModuleIso_inv, Algebra.Extension.lTensor_cotangentComplex_eq_cotangentComplexBaseChange, Finsupp.curryLinearEquiv_symm_apply_apply, coe_symm_toEquiv, LinearMap.toMatrixβ‚›β‚—β‚‚'_symm, DFinsupp.mapRange.linearEquiv_symm, congrLeft_symm_apply, conjAlgEquiv_apply, exteriorPower.alternatingMapLinearEquiv_symm_map, symm_apply_eq, Submodule.equivSubtypeMap_symm_apply, LinearMap.toMatrix_symm, TensorProduct.gradedMul_def, WithConv.symm_linearEquiv_apply, Finsupp.linearCombination_one_tmul, Matrix.toLinearEquivRight'OfInv_symm_apply, eq_symm_apply, Module.Basis.map_repr, MultilinearMap.fromDirectSumEquiv_symm_apply, LinearMap.trace_eq_contract_of_basis', LinearMap.BilinForm.congr_comp, CliffordAlgebra.changeFormEquiv_symm, Finsupp.LinearEquiv.finsuppUnique_symm_apply, MultilinearMap.domDomCongrLinearEquiv_symm_apply, LinearIsometryEquiv.toLinearEquiv_symm, image_symm_eq_preimage, PiTensorProduct.reindex_comp_tprod, symm_toLexLinearEquiv, Matrix.SpecialLinearGroup.toLin'_symm_to_linearMap, LocalizedModule.equivTensorProduct_symm_apply_tmul_one, DistribMulAction.toLinearEquiv_symm_apply, ModuleCat.homLinearEquiv_symm_apply, Finsupp.sigmaFinsuppLEquivPiFinsupp_symm_apply, Module.reflection_symm, Module.Basis.toMatrix_map, PiLp.sumPiLpEquivProdLpPiLp_symm_apply_ofLp, LinearMap.tensorKerEquivOfSurjective_symm_tmul, TensorProduct.equivFinsuppOfBasisLeft_symm, Module.Basis.coe_toOrthonormalBasis_repr, ExteriorAlgebra.liftAlternatingEquiv_symm_apply, Submodule.map_unop_mul, ModularGroup.lcRow0Extend_symm_apply, TensorPower.cast_symm, LocalizedModule.equivTensorProduct_symm_apply_tmul, arrowCongr_symm_apply, TensorProduct.rightComm_symm, Module.FinitePresentation.linearEquivMap_symm_apply, Module.AEval'.of_symm_X_smul, zero_symm, LieAlgebra.LoopAlgebra.toFinsupp_symm_single, Matrix.toLinearEquiv'_symm_apply, Module.Basis.repr_smul, Matrix.toLin_symm, Module.Ray.map_symm, QuadraticForm.tensorRId_symm_apply, Rep.coindVEquiv_symm_apply_coe, extendScalarsOfSurjective_symm, TensorProduct.quotientTensorEquiv_symm_apply_mk_tmul, PiTensorProduct.ofDirectSumEquiv_symm_lof_tprod, Module.Invertible.linearEquivOfRightInverse_symm_apply, IsLocalizedModule.iso_symm_comp, TensorProduct.AlgebraTensorModule.rTensor_tensor, funUnique_symm_apply, Matrix.toLinearMapβ‚›β‚—β‚‚'_symm, Submodule.Quotient.equiv_symm, continuous_decomposeProdAdjoint_symm, RootPairing.Equiv.weightMap_weightEquiv_symm, finsuppTensorFinsuppLid_symm_single_smul, PiTensorProduct.congr_symm_tprod, dualTensorHomEquivOfBasis_symm_cancel_right, Matrix.toLpLin_symm_pow, TensorProduct.tensorTensorTensorComm_symm, LieAlgebra.IsKilling.coe_corootSpace_eq_span_singleton', mapMatrix_symm, finsuppTensorFinsupp'_symm_single_mul, ofLeftInverse_symm_apply, isOpenMap_toWeakSpace_symm, LinearMap.polyCharpolyAux_map_eval, det_symm_mul_det, LinearMap.IsPerfectCompl.isCompl_right, ZLattice.comap_equiv_apply, comp_symm_eq, Submodule.botEquivPUnit_symm_apply, TensorProduct.map_map_assoc_symm, KaehlerDifferential.tensorKaehlerEquivBase_symm_apply, Finsupp.sumFinsuppLEquivProdFinsupp_symm_apply, TensorProduct.comm_symm, GradedTensorProduct.auxEquiv_symm_one, TensorProduct.finsuppLeft_symm_apply_single, Finsupp.linearEquivFunOnFinite_symm_apply, BilinForm.dotProduct_toMatrix_mulVec, multilinearMapCongrRight_symm_apply, piUnique_symm_apply, MultilinearMap.coe_currySumEquiv_symm, eq_symm_comp, LinearMap.IntrinsicStar.starLinearEquiv_eq_arrowCongr, IsTensorProduct.equiv_symm_apply, symm_conjAlgEquiv, MultilinearMap.curryFinFinset_symm_apply_piecewise_const, PiTensorProduct.ofFinsuppEquiv_symm_single_tprod, ofSubmodule'_symm_apply, SpecialLinearGroup.congr_linearEquiv_symm, TensorProduct.prodLeft_symm_tmul, LinearMap.IsSymmetric.toLinearMap_symm, Module.Basis.equiv_symm, KaehlerDifferential.linearMapEquivDerivation_symm_apply, invFun_eq_symm, coe_toContinuousLinearEquiv_symm, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, TensorProduct.dualDistribEquivOfBasis_symm_apply, SpecialLinearGroup.congr_linearEquiv_coe_apply, TensorProduct.leftComm_def, Module.DirectLimit.congr_symm_apply_of, sumArrowLequivProdArrow_symm_apply_inr, LinearMap.rTensor_lTensor_comp_assoc_symm, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, LinearMap.liftBaseChangeEquiv_symm_apply, conj_exact_iff_exact, Finsupp.sumFinsuppLEquivProdFinsupp_symm_inl, Algebra.TensorProduct.opAlgEquiv_apply, Representation.asModuleEquiv_symm_map_smul, AffineEquiv.linear_symm, symm_neg, Algebra.TensorProduct.equivFinsuppOfBasis_symm_apply, LinearMap.prodEquiv_symm_apply, ModuleCat.hom_inv_associator, LinearMap.trace_eq_contract', AlgEquiv.toLinearEquiv_symm, symm_flip, Submodule.dualCoannihilator_map_linearEquiv_flip, eq_toLinearMap_symm_comp, LinearMap.BilinForm.dotProduct_toMatrix_mulVec, CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, CategoryTheory.Iso.toLinearEquiv_symm, Matrix.toBilin'_symm, StarModule.decomposeProdAdjoint_symm_apply, RootPairing.corootSpan_dualAnnihilator_map_eq, coe_toAddEquiv_symm, Module.Basis.coe_toOrthonormalBasis_repr_symm, comp_symm_assoc, Submodule.coe_quotEquivOfEqBot_symm, symm_apply_apply, CharacterModule.intSpanEquivQuotAddOrderOf_apply, Submodule.prodEquivOfIsCompl_symm_apply_fst_eq_zero, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_comp_inl, extendOfIsometry_symm_eq, TensorProduct.AlgebraTensorModule.leftComm_symm_tmul, QuadraticForm.dualProdIsometry_invFun, Function.Exact.split_tfae, TensorProduct.AlgebraTensorModule.assoc_symm_tmul, TensorProduct.lid_symm_apply, Submodule.map_unop_pow, Submodule.orderIsoMapComap_apply', Rep.resIndAdjunction_homEquiv_symm_apply, PiTensorProduct.liftEquiv_symm_apply, LocalizedModule.coe_map_eq, Module.Basis.equiv'_symm_apply, comp_symm, SemimoduleCat.hom_inv_leftUnitor, Module.subsingletonEquiv_symm_apply, extendScalarsOfIsLocalization_symm_apply, piRing_symm_apply, refl_symm, TensorProduct.piRight_symm_apply, DirectSum.IsInternal.ofBijective_coeLinearMap_of_mem_ne, AdicCompletion.ofTensorProductEquivOfFiniteNoetherian_symm_of, Matrix.conjTransposeLinearEquiv_symm, symm_comp_cancel_right, finsuppTensorFinsupp'_symm_single_eq_single_one_tmul, extendOfIsometry_symm_apply, PiTensorProduct.reindex_symm, det_symm, ContinuousLinearMap.equivRange_symm_toLinearEquiv, Polynomial.mkDerivationEquiv_symm_apply, Finsupp.mapRange.linearEquiv_symm, symm_comp_assoc, Finsupp.lcongr_symm, CategoryTheory.HomOrthogonal.matrixDecompositionLinearEquiv_symm_apply, symm_trans_self, AlgEquiv.coe_symm_toLinearEquiv, Module.Basis.repr_symm_single, kroneckerLinearEquiv_symm_kronecker, eq_comp_toLinearMap_symm, finsuppTensorFinsuppRid_symm_single_smul, TensorProduct.prodRight_symm_tmul, conj_apply, ofSubmodules_symm_apply, TensorProduct.gradedComm_symm, Submodule.restrictScalarsEquiv_symm_apply, toLinearMap_symm_comp_eq, ZMod.invDFT_def', isPositive_symm_iff, Polynomial.toFinsuppIsoLinear_symm_apply_toFinsupp, TensorProduct.piRight_symm_single, FourierTransform.fourierEquiv_symm_apply, LinearIsometryEquiv.coe_symm_toLinearEquiv, IsLocalizedModule.mapEquiv_symm_apply, LinearMap.toMatrix'_symm, Module.symm_dualMap_evalEquiv, Module.Invertible.linearEquivOfLeftInverse_symm_apply, Algebra.Extension.cotangentComplexBaseChange_eq_lTensor_cotangentComplex, coe_toContinuousLinearEquiv_symm', tensorKaehlerQuotKerSqEquiv_symm_tmul_D, Matrix.kroneckerTMulAlgEquiv_symm_apply, MulOpposite.counit_def, DFinsupp.linearEquivFunOnFintype_symm_apply, arrowCongr_apply, Submodule.prodEquivOfIsCompl_symm_apply, skewProd_symm_apply, Submodule.Quotient.restrictScalarsEquiv_symm_mk, Algebra.Presentation.differentials.comm₂₃', PiTensorProduct.lift_comp_reindex, SemimoduleCat.hom_inv_associator, conjRingEquiv_apply_apply, Matrix.toLpLin_symm_id, LieModule.toLinearMap_maxTrivLinearMapEquivLieModuleHom_symm, Rep.leftRegularHomEquiv_symm_apply, symm_trans_apply, Module.Basis.det_map', Submodule.mulRightMap_eq_mulMap_comp, kroneckerTMulLinearEquiv_symm_kroneckerTMul, MultilinearMap.freeFinsuppEquiv_def, ZMod.invDFT_apply', LinearMap.GeneralLinearGroup.congrLinearEquiv_apply, image_eq_preimage_symm, ContinuousLinearEquiv.toSpanNonzeroSingleton_symm_apply, LinearIsometryEquiv.withLpProdCongr_symm_apply, conj_symm_conj, coe_curry_symm, IsBaseChange.equiv_symm_apply, TensorProduct.congr_symm_tmul, Submodule.orderIsoMapComap_symm_apply', exteriorPower.oneEquiv_symm_apply, QuadraticForm.tensorLId_symm_apply, LinearMap.BilinForm.toMatrix_symm, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, symm_symm, piCongrLeft'_symm_apply, piCongrRight_symm, TensorProduct.finsuppScalarRight_symm_apply_single, symm_smul, rTensor_symm_tmul, Complex.equivRealProdLm_symm_apply, det_conj, LinearMap.apply_toPerfPair_flip, WithCStarModule.linearEquiv_symm_apply, Complex.equivRealProdLm_symm_apply_im, AddEquiv.toIntLinearEquiv_symm, symm_comp_eq, IsLocalizedModule.linearEquiv_symm_apply, Representation.coind'_apply_apply, GradedTensorProduct.mulHom_apply, Module.DirectLimit.linearEquiv_symm_mk, Module.Basis.repr_symm_single_one, ModuleCat.hom_inv_rightUnitor, Equiv.tensorProductAssoc_def, Matrix.compLinearEquiv_symm_apply, Submodule.prodEquivOfIsCompl_symm_apply_left, transvection.symm_eq, DirectSum.IsInternal.ofBijective_coeLinearMap_of_mem, dualMap_symm, uniqueProd_symm_apply, Matrix.toLinOfInv_symm_apply, Polynomial.degreeLT.addLinearEquiv_symm_apply_inl, Polynomial.degreeLT.addLinearEquiv_symm_apply_inr_basis, Submodule.map_equiv_eq_comap_symm, RootPairing.Equiv.coweightMap_coweightEquiv_symm, Algebra.IsPushout.cancelBaseChangeAux_symm_tmul, Representation.asModuleEquiv_symm_map_rho, LinearMap.isPairSelfAdjoint_equiv, LinearMap.toMatrixβ‚‚_symm, AdjoinRoot.powerBasisAux'_repr_symm_apply, Rep.coindIso_inv_hom_hom, TensorProduct.directSumLeft_symm_lof_tmul, Representation.ofModule_asModule_act, LinearMap.quotKerEquivRange_symm_apply_image, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg, TensorProduct.tensorQuotEquivQuotSMul_symm_mk, Submodule.Quotient.equiv_symm_apply, QuadraticForm.dualProdIsometry_toFun, QuadraticForm.tensorAssoc_symm_apply, PiTensorProduct.isEmptyEquiv_symm_apply, PiTensorProduct.subsingletonEquiv_symm_apply', Matrix.toLinearMapβ‚‚_symm, Algebra.Extension.H1Cotangent.equivOfFormallySmooth_symm, comp_symm_cancel_right, symm_bijective, CharacterModule.homEquiv_symm_apply_apply_apply, starL'_symm_apply, PiTensorProduct.tmulEquivDep_symm_apply, Submodule.toLinearMap_prodEquivOfIsCompl_symm, LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg_aux, finTwoArrow_symm_apply, MultilinearMap.curryFinFinset_symm_apply_const, toEquiv_symm, coe_symm_mk, Pi.orthonormalBasis.toBasis, LinearIndependent.linearCombinationEquiv_symm_apply, SpecialLinearGroup.congr_linearEquiv_apply_apply, DFinsupp.sigmaCurryLEquiv_symm_apply, Finsupp.llift_symm_apply, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, toModuleIsoβ‚›_inv, AddEquiv.coe_toLinearEquiv_symm, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_symm_apply, Module.AEval.of_symm_X_smul, sumPiEquivProdPi_symm_apply, Finsupp.supportedEquivFinsupp_symm_apply_coe_support_val, symmEquiv_apply_apply, Function.Exact.split_tfae', Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, symm_conj_apply, DFinsupp.lsum_symm_apply, conjAlgEquiv_apply_apply, algEquivOfRing_symm_apply, Submodule.quotientEquivOfIsCompl_symm_apply, Module.Relations.Solution.IsPresentation.uniq_symm_var, conj_conj_symm, AdicCompletion.congr_symm_apply, Polynomial.degreeLT.addLinearEquiv_symm_apply, eq_comp_symm, AffineMap.toConstProdLinearMap_symm_apply, LocallyConstant.congrLeftβ‚—_symm_apply_apply, Matrix.toLin'OfInv_symm_apply, Finsupp.linearCombination_restrict, Algebra.Presentation.differentials.comm₁₂, Submodule.map_symm_eq_iff, RootPairing.ker_rootForm_eq_dualAnnihilator, QuadraticAlgebra.linearEquivTuple_symm_apply, DirectSum.decomposeLinearEquiv_symm_comp_lof, IsLocalizedModule.iso_symm_apply_aux, ofInjectiveEndo_right_inv, IsBaseChange.endHom_apply, Module.Basis.parallelepiped_eq_map, TensorProduct.piScalarRight_symm_single, ContinuousAlternatingMap.piLinearEquiv_symm_apply, LinearMap.polyCharpolyAux_map_aeval, prodUnique_symm_apply, TensorProduct.quotTensorEquivQuotSMul_symm_mk, AdicCompletion.of_ofLinearEquiv_symm, Trivialization.coordChangeL_symm_apply, SpecialLinearGroup.toLinearEquiv_symm_apply, Submodule.quotientPi_symm_apply, LinearMap.BilinForm.comp_congr, prodCongr_symm, LinearMap.kerComplementEquivRange_symm_apply, PiLp.basisFun_eq_pi_basisFun, Module.Basis.end_repr_symm_apply, PeriodPair.latticeEquiv_symm_apply, MvPolynomial.rTensor_symm_apply_single, Complex.equivRealProdLm_symm_apply_re, Finsupp.lcongr_symm_single, sigmaFinsuppLequivDFinsupp_symm_apply, TensorProduct.leftComm_symm_tmul, Finsupp.domLCongr_symm, ofEq_symm, Rep.finsuppTensorRight_inv_hom, DirectSum.decomposeLinearEquiv_symm_apply, isSymmetric_symm_iff, RingEquiv.toSemilinearEquiv_symm_apply, symmEquiv_symm_apply_apply, TensorProduct.assoc_tensor'', Matrix.toLinearMapβ‚›β‚—β‚‚_symm, Trivialization.coe_coordChangeL', WithCStarModule.map_top_submodule, AlgHom.toLinearMap_fromOpposite, Module.Basis.coe_ofRepr, AdicCompletion.tensor_map_id_left_eq_map, CoalgEquiv.symm_toLinearEquiv, Module.End.mem_invtSubmodule_symm_iff_le_map, CharacterModule.dual_rTensor_conj_homEquiv, CoalgEquiv.symm_toCoalgHom, Submodule.mulLeftMap_eq_mulMap_comp, symm_mk, TensorProduct.directSum_symm_lof_tmul, Rep.coindResAdjunction_homEquiv_symm_apply, continuous_symm, LinearMap.IsProj.eq_conj_prod_map', submoduleMap_symm_apply, Polynomial.degreeLT.addLinearEquiv_symm_apply', toSpanNonzeroSingleton_symm_apply_smul, CoalgEquiv.coe_symm_toLinearEquiv, congrQuadraticMap_symm_apply, BialgEquiv.trans_symm_apply, Finsupp.sumFinsuppLEquivProdFinsupp_symm_inr, Module.Dual.baseChange_baseChange, symm_trans_cancel_right, PiTensorProduct.map_comp_reindex_symm, RootPairing.polarizationEquiv_symm_apply_coroot, coe_rTensor_symm, trans_symm_cancel_left, MeasureTheory.ComplexMeasure.equivSignedMeasureβ‚—_symm_apply, piCurry_symm_apply, Submodule.map_unop_one, symmEquiv_apply_symm_apply, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, Module.apply_evalEquiv_symm_apply, Matrix.reindexLinearEquiv_symm, Module.Basis.mulOpposite_repr_eq, Module.Basis.coe_repr_symm, Rep.finsuppTensorLeft_inv_hom, CliffordAlgebra.reverseEquiv_symm_apply, Finsupp.linearEquivFunOnFinite_symm_single, TensorProduct.rid_symm_apply, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_symm_apply, Submodule.prodEquivOfIsCompl_symm_apply_right, LieAlgebra.IsKilling.cartanEquivDual_symm_apply_mem_corootSpace, Rep.leftRegularHomEquiv_symm_single, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, prodProdProdComm_symm, AlgEquiv.ofLinearEquiv_symm, Matrix.kroneckerAlgEquiv_symm_apply, ofTop_symm_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom, Algebra.TensorProduct.basis_repr_symm_apply, Ideal.pi_mkQ_rTensor, KaehlerDifferential.quotKerTotalEquiv_symm_apply, LinearMap.quotKerEquivOfSurjective_symm_apply, TensorProduct.AlgebraTensorModule.tensorTensorTensorComm_symm_tmul, smulOfNeZero_symm_apply, apply_symm_apply, LinearMap.GeneralLinearGroup.congrLinearEquiv_symm, dualTensorHomEquivOfBasis_symm_cancel_left, Module.Invertible.rTensorEquiv_symm_apply_apply, Complex.selfAdjointEquiv_symm_apply, withLpCongr_symm, AddEquiv.coe_symm_toNatLinearEquiv, TensorProduct.AlgebraTensorModule.cancelBaseChange_symm_tmul, TensorProduct.lift.equiv_symm_apply, det_mul_det_symm, CategoryTheory.Linear.homCongr_symm_apply, ModuleCat.uliftFunctor_map, Rep.linearization_Ξ΄_hom, conjRingEquiv_symm_apply_apply, Matrix.uniqueLinearEquiv_symm_apply, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, RootPairing.rootSpan_dualAnnihilator_map_eq_iInf_ker_root', finsuppTensorFinsupp_symm_single, addMonoidHomLequivInt_symm_apply, LinearMap.det_conj, Submodule.lTensorOne_symm_apply, RootPairing.Equiv.weightEquiv_symm_weightMap, multilinearCurryLeftEquiv_symm_apply, TensorProduct.toLinearMap_symm_lid, ContinuousLinearEquiv.homothety_inverse, ofSubsingleton_symm_apply, Finsupp.linearCombination_eq_fintype_linearCombination, Finsupp.supportedEquivFinsupp_symm_apply_coe, coe_lTensor_symm, MultilinearMap.curryMidLinearEquiv_symm_apply, finsuppLequivDFinsupp_symm_apply, Algebra.TensorProduct.equivPiOfFiniteBasis_symm_apply, TensorProduct.finsuppRight_symm_apply_single, Trivialization.coe_coordChangeL, CoalgEquiv.trans_symm_apply, LieModule.coe_maxTrivLinearMapEquivLieModuleHom_symm, KaehlerDifferential.tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap, LinearMap.BilinForm.apply_toDual_symm_apply, Module.Basis.linearMap_repr_symm_apply, lieConj_symm, Submodule.comap_unop_pow, sumArrowLequivProdArrow_symm_apply_inl, MeasureTheory.Measure.addHaar_preimage_linearEquiv, GradedTensorProduct.of_symm_of, Matrix.toLpLin_symm_comp, TensorProduct.tensorTensorTensorAssoc_symm_tmul, coe_inv_det, Module.Relations.Solution.IsPresentation.postcomp_uniq_symm, LinearMap.toMatrixβ‚‚_symm', ZMod.invDFT_def, Representation.coinvariantsFinsuppLEquiv_symm_apply, Subalgebra.linearEquivOp_symm_apply_coe, TensorProduct.equivFinsuppOfBasisRight_symm, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply, ContinuousLinearMap.toSpanSingletonLE_symm_apply, MulOpposite.comul_def, Coalgebra.coassoc_symm, exteriorPower.alternatingMapLinearEquiv_symm_apply, TensorProduct.lid'_symm_apply, ofInjectiveEndo_left_inv, Function.Exact.linearEquivOfSurjective_symm_apply, LieAlgebra.IsKilling.traceForm_coroot, Module.Basis.mapCoeffs_repr, Ideal.cotangentEquivIdeal_symm_apply, Polynomial.taylorLinearEquiv_symm, DirectSum.IsInternal.ofBijective_coeLinearMap_of_ne, lTensor_symm_tmul, MulOpposite.opLinearEquiv_symm_toAddEquiv, Polynomial.degreeLT.addLinearEquiv_symm_apply_inl_basis, ModuleCat.hom_inv_leftUnitor, AlternatingMap.domDomCongrβ‚—_symm_apply, TensorProduct.directLimitLeft_symm_of_tmul, Orientation.map_apply, RootPairing.corootSpan_dualAnnihilator_le_ker_rootForm, LinearMap.toMvPolynomial_eval_eq_apply, KaehlerDifferential.mvPolynomialBasis_repr_symm_single, arrowCongrAddEquiv_apply, Rep.freeLift_hom, coe_ofTop_symm_apply, baseChange_symm, Submodule.fstEquiv_symm_apply_coe, det_coe_symm, trans_symm, DirectSum.linearEquivFunOnFintype_symm_single, symm_smul_apply, fromModuleCatToModuleCatLinearEquiv_symm_apply_coe, PiTensorProduct.lift_comp_reindex_symm, PiTensorProduct.ofDFinsuppEquiv_symm_single_tprod, coe_toEquiv_symm, Submodule.equivOpposite_symm_apply, Basis.equivFun_symm_single, TensorProduct.map_map_comp_assoc_symm_eq, MvPolynomial.scalarRTensor_symm_apply_single, symm_trans_cancel_left, MultilinearMap.constLinearEquivOfIsEmpty_symm_apply, RootPairing.rootSpan_dualAnnihilator_map_eq, symmEquiv_symm_apply_symm_apply, RootPairing.Equiv.inv_coweightMap, AlternatingMap.domLCongr_apply, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inl, Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_inr, Submodule.comap_unop_one, CategoryTheory.Abelian.Ext.linearEquivβ‚€_symm_apply, LinearMap.quotientInfEquivSupQuotient_symm_apply_left, LinearMap.lflip_symm, LinearMap.coe_toContinuousLinearMap_symm, Submodule.mulMap_op, AddEquiv.toNatLinearEquiv_symm, ofIsUnitDet_symm_apply, Finsupp.mapDomain.linearEquiv_symm, Matrix.piLinearEquiv_symm_apply, LinearMap.extendScalarsOfIsLocalizationEquiv_symm_apply, Rep.freeLiftLEquiv_symm_apply, ContinuousLinearMap.coprodEquiv_symm_apply, Matrix.coe_ofLinearEquiv_symm, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, AffineBasis.coord_smul, IsBaseChange.linearMapLeftRightHom_apply, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_symm_apply, LinearMap.coprodEquiv_symm_apply, arrowCongrAddEquiv_symm_apply, map_mem_invtSubmodule_iff, Matrix.SpecialLinearGroup.toLin'_symm_apply, MulOpposite.coe_opLinearEquiv_symm_toLinearMap, TensorProduct.assoc_tensor, Submodule.dualAnnihilator_map_linearEquiv_flip_symm, LinearMap.transvection.congr, Module.Basis.repr_symm_apply, Module.Dual.congr_apply_apply, coeFn_toContinuousLinearEquivOfContinuous_symm, Module.Basis.coe_ofEquivFun, ofLinear_symm_apply, alternatingMapCongrRight_symm_apply_apply, WithLp.linearEquiv_symm_apply, MultilinearMap.curryFinFinset_symm_apply, Module.Invertible.rightCancelEquiv_comp_rTensor_comp_symm, WithLp.coe_symm_linearEquiv, TensorProduct.finsuppScalarLeft_symm_apply_single, CategoryTheory.Abelian.Ext.homLinearEquiv_symm_apply, Module.compHom.toLinearEquiv_symm_apply, Equiv.tensorProductComm_def, Submodule.map_dualCoannihilator_linearEquiv_flip, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, TensorProduct.toLinearMap_symm_rid, ContinuousLinearMap.toUniformConvergenceCLM_symm_apply, TensorProduct.assoc_tensor', Finsupp.linearCombination_eq_fintype_linearCombination_apply, transvection.symm_eq', Submodule.dualQuotEquivDualAnnihilator_symm_apply_mk, ofInjective_symm_apply, Submodule.mem_map_equiv, LinearMap.BilinForm.congr_symm, TensorProduct.tensorQuotientEquiv_symm_apply_tmul_mk, coe_symm_mk', Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, GradedTensorProduct.symm_of_of, RootPairing.corootSpan_dualAnnihilator_map_eq_iInf_ker_coroot', Submodule.map_equivMapOfInjective_symm_apply, Finsupp.supportedEquivFinsupp_symm_apply_coe_apply, RootPairing.invtSubmodule_reflection_of_invtSubmodule_coreflection, SemimoduleCat.homLinearEquiv_symm_apply, Module.Basis.det_map, LieModule.shiftedGenWeightSpace.shift_symm_apply, ofLinear_symm_toLinearMap, TensorProduct.directLimitRight_symm_of_tmul, Finsupp.finsuppProdLEquiv_symm_apply_apply, ModuleCat.monoidalClosed_pre_app, TensorProduct.assoc_symm_tmul, AdicCompletion.sumEquivOfFintype_symm_apply, CategoryTheory.InducedCategory.homLinearEquiv_symm_apply_hom, trans_dualMap_symm_flip, TensorProduct.comm_symm_tmul, LinearMap.quotientInfEquivSupQuotient_symm_apply_right, exteriorPower.zeroEquiv_symm_apply, Module.AEval.mem_mapSubmodule_apply, TensorProduct.equivFinsuppOfBasisRight_symm_apply, self_trans_symm, Matrix.toLpLinAlgEquiv_symm_apply, LinearMap.lTensor_tensor, LieEquiv.ofBijective_invFun, Submodule.sndEquiv_symm_apply_coe, AlternatingMap.domLCongr_symm, Submodule.comapSubtypeEquivOfLe_symm_apply, TensorProduct.AlgebraTensorModule.rightComm_symm, toFGModuleCatIso_inv, RootPairing.ker_corootForm_eq_dualAnnihilator, LinearMap.lsum_symm_apply, Module.Basis.coord_equivFun_symm, TensorProduct.quotTensorEquivQuotSMul_symm_comp_mkQ, dotProduct_toMatrixβ‚‚_mulVec, Matrix.entryLinearMap_eq_comp, trans_symm_cancel_right, LinearMap.IsPerfectCompl.isCompl_left, symm_comp_cancel_left, TensorProduct.rightComm_def, Submodule.map_dualAnnihilator_linearEquiv_flip_symm, TensorProduct.directSumRight_symm_lof_tmul, ContinuousLinearEquiv.arrowCongrSL_toLinearEquiv_symm_apply, symm_prodComm, MultilinearMap.fromDFinsuppEquiv_symm_apply, AdicCompletion.ofLinearEquiv_symm_of, InnerProductSpace.symm_toEuclideanLin_rankOne, contractLeft_assoc_coevaluation', DirectSum.lequivProdDirectSum_symm_apply, Matrix.kroneckerStarAlgEquiv_symm_apply, Module.dualProdDualEquivDual_symm_apply, TensorProduct.assocIsometry_symm_apply, Fin.consLinearEquiv_symm_apply, Submodule.comap_unop_mul, LinearMap.lTensor_eqLocus_subtype_tensoreqLocusEquiv_symm, LinearMap.IsPositive.toLinearMap_symm, apply_ofBijective_symm_apply, TensorProduct.lid_tensor, ContinuousLinearEquiv.coe_symm_toLinearEquiv, DirectSum.linearEquivFunOnFintype_symm_coe, MultilinearMap.ofSubsingletonβ‚—_symm_apply, MultilinearMap.currySumEquiv_symm_apply, GradedTensorProduct.of_symm_one, Submodule.coe_prodEquivOfClosedCompl_symm, Rep.indResHomEquiv_symm_apply_hom, QuadraticForm.dualProdProdIsometry_invFun, RootPairing.Equiv.inv_weightMap, finsuppLEquivDirectSum_symm_lof, Trivialization.linearEquivAt_symm_apply, Finsupp.curryLinearEquiv_symm_apply, Module.Basis.coord_toDualEquiv_symm_apply, Finsupp.lsum_symm_apply, Module.Invertible.leftCancelEquiv_comp_lTensor_comp_symm, Module.Basis.coord_repr_symm, TensorProduct.tensorQuotEquivQuotSMul_symm_comp_mkQ, Module.Dual.congr_symm_apply_apply, LinearMap.rTensor_tensor, funCongrLeft_symm, Module.FinitePresentation.linearEquivMapExtendScalars_symm_apply, symm_ofLexLinearEquiv, AddEquiv.coe_symm_toIntLinearEquiv, IsNoetherian.equivPUnitOfProdInjective_symm_apply, PiTensorProduct.lift_symm

LinearIsometryEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
154 mathmath: DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply, coe_symm_toIsometryEquiv, hasFDerivAt_iff_hasGradientAt, coe_ofLinearIsometry_symm, Submodule.orthogonalDecomposition_symm_apply, IsometryEquiv.toRealLinearIsometryEquiv_symm_apply, piLpCongrRight_symm, Submodule.toLinearEquiv_orthogonalDecomposition_symm, symm_bijective, withLpProdComm_symm, iteratedFDerivWithin_succ_eq_comp_right, InnerProductSpace.toDual_symm_apply, IsHilbertSum.linearIsometryEquiv_symm_apply, coe_symm_toHomeomorph, MeasureTheory.charFun_toDual_symm_eq_charFunDual, Submodule.reflection_symm, iteratedFDerivWithin_succ_eq_comp_left, conjStarAlgEquiv_apply, toHomeomorph_symm, apply_symm_apply, Orientation.volumeForm_map, HasFTaylorSeriesUpToOn.zero_eq', image_eq_preimage_symm, adjoint_eq_symm, IsHilbertSum.hasSum_linearIsometryEquiv_symm, Submodule.coe_orthogonalDecomposition_symm, inner_map_eq_flip, Quaternion.linearIsometryEquivTuple_symm_apply, ContinuousAlternatingMap.ofSubsingletonLIE_symm_apply, toLinearEquiv_symm, adjoint_toLinearMap_eq_symm, PiLp.sumPiLpEquivProdLpPiLp_symm_apply_ofLp, ContinuousMultilinearMap.curryFinFinset_symm_apply_const, comp_hasFDerivWithinAt_iff', symm_prodComm, OrthonormalBasis.coe_ofRepr, Orientation.rotation_symm, self_trans_symm, Orientation.rotation_map, ofTop_symm_apply_coe, HasFDerivWithinAt.hasGradientWithinAt, Orthonormal.equiv_symm, LinearMap.IsSymmetric.diagonalization_symm_apply, coe_prodAssoc_symm, ContinuousMultilinearMap.ofSubsingletonβ‚—α΅’_symm_apply, preimage_ball, continuousMultilinearCurryFin0_symm_apply, Orientation.rightAngleRotation_symm, continuousMultilinearCurryRightEquiv_symm_apply, MeasureTheory.lpMeasToLpTrimLie_symm_indicator, ContinuousMap.linearIsometryBoundedOfCompact_symm_apply, Module.Basis.coe_toOrthonormalBasis_repr_symm, ContinuousLinearMap.adjointAux_apply, LinearMap.isSymmetric_linearIsometryEquiv_conj_iff, ContinuousAlternatingMap.constOfIsEmptyLIE_symm_apply, LinearEquiv.extendOfIsometry_symm_eq, Orientation.rightAngleRotation_map', LinearEquiv.extendOfIsometry_symm_apply, coe_symm_toLinearEquiv, LinearMap.isPositive_linearIsometryEquiv_conj_iff, Orthonormal.linearIsometryEquiv_symm_apply_single_one, toContinuousLinearEquiv_symm, Submodule.starProjection_map_apply, symm_trans_self, withLpProdCongr_symm_apply, RCLike.realLinearIsometryEquiv_symm_apply, Complex.orthonormalBasisOneI_repr_symm_apply, symm_comp_self, iteratedDeriv_eq_equiv_comp, RCLike.complexLinearIsometryEquiv_symm_apply, OrthonormalBasis.sum_repr_symm, Submodule.reflection_map, ContinuousMultilinearMap.curryFinFinset_symm_apply_piecewise_const, FormalMultilinearSeries.leftInv_coeff_one, HilbertBasis.repr_symm_single, MulOpposite.opLinearIsometryEquiv_symm_apply, ContinuousAlternatingMap.piLIE_symm_apply_apply, OrthonormalBasis.measurePreserving_repr_symm, piLpCurry_symm_apply, coe_inv, symm_conjStarAlgEquiv_apply_apply, symm_apply_apply, submoduleMap_symm_apply_coe, symm_trans, symm_rTensor, TensorProduct.commIsometry_symm, OrthonormalBasis.equiv_symm, PiTensorProduct.liftIsometry_symm_apply, iteratedFDeriv_succ_eq_comp_right, coe_lpBCFβ‚—α΅’_symm, coe_lpPiLpβ‚—α΅’_symm, ContinuousMultilinearMap.piβ‚—α΅’_symm_apply, prodComm_symm_apply, symm_conjStarAlgEquiv, coe_symm_toContinuousLinearEquiv, OrthonormalBasis.repr_symm_single, Orientation.oangle_map, Submodule.reflection_map_apply, withLpProdUnique_symm_apply, self_comp_symm, toMeasurableEquiv_symm, Orientation.kahler_map, ContinuousMultilinearMap.prodL_symm_apply, IsHilbertSum.linearIsometryEquiv_symm_apply_dfinsupp_sum_single, Orientation.areaForm_map, iteratedFDeriv_zero_eq_comp, continuousMultilinearCurryRightEquiv_symm_apply', TensorProduct.congrIsometry_symm, iteratedDerivWithin_eq_equiv_comp, hasFDerivWithinAt_iff_hasGradientWithinAt, comp_hasFDerivAt_iff', iteratedFDerivWithin_zero_eq_comp, IsometryEquiv.coe_toRealLinearIsometryEquivOfMapZero_symm, symm_units_smul, IsHilbertSum.linearIsometryEquiv_symm_apply_single, symm_smul_apply, star_eq_symm, coe_symm_trans, Orientation.rightAngleRotation_map, ContinuousLinearMap.flipβ‚—α΅’'_symm, HasFDerivAt.hasGradientAt, rotation_symm, continuousMultilinearCurryLeftEquiv_symm_apply, iteratedFDeriv_succ_eq_comp_left, toIsometryEquiv_symm, continuousMultilinearCurryFin1_symm_apply, PadicInt.mahlerEquiv_symm_apply, HasFTaylorSeriesUpTo.zero_eq', ContinuousMultilinearMap.curryFinFinset_symm_apply, Complex.isometryOfOrthonormal_symm_apply, inv_def, symm_symm, piLpCongrLeft_symm, ContinuousAlternatingMap.prodLIE_symm_apply, Orientation.rotation_symm_apply, ContinuousLinearMap.flipβ‚—α΅’_symm, FormalMultilinearSeries.rightInv_coeff_one, symm_lTensor, ContinuousLinearMap.fpowerSeries_apply_one, MeasureTheory.lpMeasToLpTrimLie_symm_toLp, conjStarAlgEquiv_apply_apply, withLpUniqueProd_symm_apply, ContinuousLinearMap.fpowerSeriesBilinear_apply_one, TensorProduct.assocIsometry_symm_apply, TensorProduct.lidIsometry_symm_apply, HilbertBasis.hasSum_repr_symm, withLpProdAssoc_symm_apply, ofEq_symm, preimage_sphere, symm_neg, ContinuousMultilinearMap.curryMidEquiv_symm_apply, coe_symm_toMeasurableEquiv, preimage_closedBall, Complex.conjLIE_symm

LinearPMap.IsFormalAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”LinearPMap.IsFormalAdjointβ€”β€”inner_conj_symm

List.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”β€”β€”β€”β€”

List.IsRotated

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”List.IsRotatedβ€”β€”List.rotate_rotate
List.rotate_length_mul

Lists.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Lists.Equivβ€”β€”β€”

ManyOneEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ManyOneEquivβ€”β€”β€”

Mathlib.Tactic.LibraryRewrite.Rewrite

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

Mathlib.Tactic.LibraryRewrite.RewriteInterface

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

Mathlib.Tactic.LibraryRewrite.RewriteLemma

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

Matrix.IsAdjMatrix

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalMatrix.IsAdjMatrixMatrix.IsSymmβ€”β€”

MeasurableEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
82 mathmath: preimage_symm, symm_symm, MeasureTheory.MeasurePreserving.preErgodic_conjugate_iff, symm_mulRightβ‚€, symm_bijective, symm_addLeft, piFinTwo_symm_apply, withDensity_ofReal_map_symm_apply_eq_integral_abs_det_fderiv_mul, self_comp_symm, MeasureTheory.MeasurePreserving.symm, comap_apply, toLp_symm_apply, symm_inv, funUnique_symm_apply, map_symm_map, symm_mulLeftβ‚€, quasiMeasurePreserving_symm, coe_IicProdIoc_symm, symm_preimage_preimage, map_apply_eq_iff_map_symm_apply_eq, ProbabilityTheory.Kernel.prodAssoc_symm_prod, comap_symm, curry_symm_apply, ofInvolutive_symm, symm_mulRight, unitInterval.symmMeasurableEquiv_symm_apply, apply_symm_apply, withDensity_ofReal_map_symm_apply_eq_integral_abs_deriv_mul, piUnique_symm_apply, symm_mulLeft, Complex.measurableEquivRealProd_symm_polarCoord_symm_apply, MeasureTheory.Measure.infinitePi_map_curry_symm, piEquivPiSubtypeProd_symm_apply, map_map_symm, symm_apply_apply, Complex.measurableEquivPi_symm_apply, image_symm, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, symm_addRight, MeasureTheory.Measure.compProd_assoc, piCurry_symm_apply, coe_curry_symm, coe_sumPiEquivProdPi_symm, symm_trans_self, MeasureTheory.MeasurePreserving.ergodic_conjugate_iff, image_eq_preimage_symm, LinearIsometryEquiv.toMeasurableEquiv_symm, finTwoArrow_symm_apply, MeasurableEmbedding.equivRange_symm_apply_mk, Homeomorph.toMeasurableEquiv_symm_coe, symm_smulβ‚€, symm_comp_self, ProbabilityTheory.Kernel.compProd_assoc, ProbabilityTheory.Kernel.compProd_def, coe_toEquiv_symm, symm_smul, withDensity_ofReal_map_symm_apply_eq_integral_abs_deriv_mul', Ergodic.symm, setOf_symm_apply, symm_refl, self_trans_symm, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, coe_piCurry_symm, gaussianReal_map_symm_apply, MeasureTheory.Measure.pi_map_piOptionEquivProd, Ergodic.symm_iff, eq_image_iff_symm_image_eq, Complex.measurableEquivRealProd_symm_apply, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.Measure.infinitePi_map_piCurry_symm, symm_vadd, EuclideanSpace.coe_measurableEquiv_symm, symm_neg, map_symm, ProbabilityTheory.Kernel.map_apply_eq_iff_map_symm_apply_eq, unitInterval.symm_symmMeasurableEquiv, MeasureTheory.MeasurableEquiv.measurePreserving_symm, coe_toLp_symm, piMeasurableEquivTProd_symm_apply, symm_mk, piFinSuccAbove_symm_apply, LinearIsometryEquiv.coe_symm_toMeasurableEquiv

MeasureTheory.AEDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MeasureTheory.AEDisjointβ€”β€”eq_1
Set.inter_comm

MeasureTheory.Measure.MutuallySingular

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MeasureTheory.Measure.MutuallySingularβ€”β€”MeasurableSet.compl
compl_compl

MeasureTheory.MeasurePreserving

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalMeasureTheory.MeasurePreserving
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symmβ€”MeasurableEquiv.measurable
map_eq
MeasureTheory.Measure.map_map
MeasurableEquiv.symm_comp_self
MeasureTheory.Measure.map_id

MeasureTheory.VectorMeasure.MutuallySingular

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MeasureTheory.VectorMeasure.MutuallySingularβ€”β€”MeasurableSet.compl
compl_compl

Metric.AreSeparated

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Metric.AreSeparatedβ€”β€”PseudoEMetricSpace.edist_comm

ModelWithCorners

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
32 mathmath: symm_continuousWithinAt_comp_right_iff, mdifferentiableOn_symm, image_eq, modelWithCornersSelf_coe_symm, mk_symm, uniqueDiffOn_preimage, symm_comp_self, prod_symm_apply, OpenPartialHomeomorph.extend_target, modelWithCorners_prod_coe_symm, OpenPartialHomeomorph.extend_coe_symm, symm_map_nhdsWithin_range, leftInverse, contDiffWithinAtProp_self_target, right_inv, continuousOn_symm, hasMFDerivWithinAt_symm, continuousWithinAt_symm, continuous_symm, symm_map_nhdsWithin_image, extChartAt_target, continuousAt_symm, extChartAt_coe_symm, contMDiffOn_model_symm, coe_transContinuousLinearEquiv_symm, uniqueDiffOn_preimage_source, rightInvOn, left_inv, mdifferentiableWithinAt_symm, differentiableWithinAtProp_self_target, toHomeomorph_symm_apply, toPartialEquiv_coe_symm

Monovary

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Monovary
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”le_of_not_gt
LT.lt.not_ge

MonovaryOn

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MonovaryOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”le_of_not_gt
LT.lt.not_ge

MoritaEquivalence

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

MulEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
332 mathmath: CommGrpCat.uliftFunctor_map, strictMono_symm, Submonoid.mem_map_equiv, MulAut.symm_inv, galRestrict_symm_algebraMap_apply, Subgroup.centerCongr_symm_apply_coe, zpowersMulHom_symm_apply, SemidirectProduct.congr_symm_apply_left, monoidHomCongrLeft_apply, AddEquiv.toMultiplicative_apply_symm_apply, coe_monoidHom_symm_comp_coe_monoidHom, CoxeterSystem.reindex_mulEquiv, Subgroup.comap_equiv_eq_map_symm, WithZero.withZeroUnitsEquiv_symm_apply_coe, mulEquivOfOrderOfEq_symm_apply_gen, AddAutAdditive_apply_symm_apply, MulAut.inv_apply, toContinuousMulEquiv_symm_apply, CategoryTheory.InducedCategory.endEquiv_symm_apply_hom, MulAut.conjNormal_symm_apply, val_inv_unitarySubgroupUnitsEquiv_symm_apply_coe, Submonoid.leftInvEquiv_symm_mul, CategoryTheory.Iso.commGroupIsoToMulEquiv_symm_apply, OrderMonoidIso.withZero_symm_apply_symm_apply, IsCyclic.val_mulAutMulEquiv_apply, symm_mk, symm_comp_self, Submonoid.fromLeftInv_leftInvEquiv_symm, MulAction.stabilizerEquivStabilizer_symm_apply, associatesEquivOfUniqueUnits_symm_apply, Subsemigroup.centerCongr_symm_apply_coe, OrderMonoidIso.val_unitsCongr_symm_apply, eq_symm_apply, Set.unitEquivUnitsInteger_symm_apply_coe, Localization.mulEquivOfQuotient_symm_monoidOf, val_unitarySubgroupUnitsEquiv_symm_apply_coe, comapSubgroup_symm_apply, Subgroup.comap_equiv_eq_map_symm', autEquivZmod_symm_apply_natCast, map_dvd_iff_dvd_symm, toSingleObjEquiv_inverse_map, SkewMonoidAlgebra.domCongrAlg_apply, Matrix.SpecialLinearGroup.center_equiv_rootsOfUnity'_symm_apply_coe_coe, NonUnitalSubsemiring.centerCongr_symm_apply_coe, CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_hom, autAdjoinRootXPowSubCEquiv_symm_smul, MonoidHom.ofLeftInverse_symm_apply, AddOpposite.opMulEquiv_symm_apply, uliftZPowersHom_symm_apply, AddAutAdditive_symm_apply_symm_apply, Subsemiring.centerCongr_symm_apply_coe, prodMultiplicative_symm_apply, val_piUnits_symm_apply, MulAutMultiplicative_symm_apply_apply, opOp_symm_apply, monoidHomCongrLeftEquiv_apply, comp_symm_eq, op_apply_symm_apply, ZMod.AddAutEquivUnits_symm_apply, HNNExtension.inv_t_mul_of, HNNExtension.toSubgroupEquiv_neg_one, eq_symm_comp, StarMulEquiv.toMulEquiv_symm, Submonoid.LocalizationMap.ofMulEquivOfDom_comp_symm, Submonoid.topEquiv_symm_apply_coe, AddEquiv.toMultiplicativeLeft_apply_symm_apply, mk_coe', coprodPUnit_symm_apply, invFun_eq_symm, CategoryTheory.Aut.toEnd_apply, AffineEquiv.linear_equivUnitsAffineMap_symm_apply, uliftPowersHom_symm_apply, coprodAssoc_symm_apply_inr_inr, Subgroup.mem_map_equiv, AddEquiv.toMultiplicativeRight_apply_symm_apply, restrictRootsOfUnity_symm, Subsemigroup.topEquiv_symm_apply_coe, symm_trans_self, MulAut.coe_inv, unitary.linearIsometryEquiv_coe_symm_apply, withZero_apply_symm_apply, SemidirectProduct.congr'_apply_right, OrderMonoidIso.val_inv_unitsCongr_symm_apply, symm_monoidHomCongrRight, ofLeftInverse_symm_apply, Con.comapQuotientEquivOfSurj_symm_mk', QuotientGroup.congr_symm, Subgroup.map_symm_eq_iff_map_eq, val_inv_unitsNonZeroDivisorsEquiv_symm_apply_coe, Unitary.coe_symm_linearIsometryEquiv_apply, MulAutMultiplicative_symm_apply_symm_apply, toSingleObjEquiv_unitIso_hom, SpecialLinearGroup.congr_linearEquiv_symm, Submonoid.val_inv_unitsTypeEquivIsUnitSubmonoid_symm_apply, Nonneg.val_unitsEquivPos_symm_apply_coe, MonoidHom.restrictHomKerEquiv_symm_coe_apply, eq_comp_symm, GroupExtension.Equiv.coe_symm, IsFreeGroup.mulEquiv_def, AlgEquiv.symm_toMulEquiv, InfiniteGalois.mulEquivToLimit_symm_continuous, IsCyclic.val_inv_mulAutMulEquiv_apply, WithZero.withZeroUnitsEquiv_symm_strictMono, Monoid.PushoutI.NormalWord.cons_head, prodUnique_symm_apply, OrderMonoidIso.withZero_apply_symm_apply, coe_prodComm_symm, WithZero.unitsWithZeroEquiv_symm_apply, Subgroup.subgroupOfEquivOfLe_symm_apply_coe_coe, autEquivZmod_symm_apply_intCast, MonoidHom.toMulEquiv_symm_apply, MulOpposite.coe_symm_opMulEquiv, associatesNonZeroDivisorsEquiv_symm_mk_mk, UniqueFactorizationMonoid.normalizedFactorsEquiv_symm_apply, apply_eq_iff_symm_apply, refl_symm, IsFreeGroup.toFreeGroup_symm_apply, QuotientGroup.quotientKerEquivOfRightInverse_symm_apply, piCongrRight_symm, Units.mapEquiv_symm, withOneCongr_symm, self_comp_symm, SemidirectProduct.congr'_apply_left, symm_apply_eq, toSingleObjEquiv_counitIso_hom, SpecialLinearGroup.centerEquivRootsOfUnity_symm_apply, ConjAct.of_mul_symm_eq, Unitization.val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, SemidirectProduct.congr'_symm_apply_right, toMonCatIso_inv, Unitization.val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, val_unitsNonZeroDivisorsEquiv_symm_apply_coe, NonUnitalSubring.centerCongr_symm_apply_coe, Subgroup.val_centerUnitsEquivUnitsCenter_symm_apply_coe, Monoid.IsTorsion.torsionMulEquiv_symm_apply_coe, MulHom.toMulEquiv_symm_apply, AddEquiv.toMultiplicativeLeft_symm_apply_symm_apply, Submonoid.centerToMulOpposite_symm_apply_coe, symm_monoidHomCongrRightEquiv, CategoryTheory.Functor.FullyFaithful.mulEquivEnd_symm_apply, toMultiplicative_toAdditive_symm_apply, CategoryTheory.PreGaloisCategory.autMulEquivAutGalois_symm_app, toCommGrpIso_inv, HNNExtension.of_mul_t, Subgroup.topEquiv_symm_apply_coe, Unitary.linearIsometryEquiv_coe_symm_apply, toSingleObjEquiv_unitIso_inv, WithZero.toMulBot_coe_ofAdd, cast_symm_apply, Con.quotientKerEquivOfRightInverse_symm_apply, mulAutArrow_apply_symm_apply, mapSubgroup_symm_apply, AlgEquiv.autCongr_symm, inv'_symm_apply, equivLike_inv_eq_symm, ofBijective_apply_symm_apply, CategoryTheory.Hom.mulEquivCongrRight_symm_apply, uniqueProd_symm_apply, Submonoid.centerCongr_symm_apply_coe, AffineEquiv.equivUnitsAffineMap_symm_apply_apply, symm_monoidHomCongrLeftEquiv, toSingleObjEquiv_counitIso_inv, galRestrictHom_symm_algebraMap_apply, freeGroupEquivCoprodI_symm_apply, Con.comapQuotientEquivOfSurj_symm_mk, Matrix.SpecialLinearGroup.toLin_equiv.symm_toLinearMap_eq, Subsemigroup.centerToMulOpposite_symm_apply_coe, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, MulDistribMulAction.toMulEquiv_symm_apply, NumberField.RingOfIntegers.withValEquiv_apply, Localization.mulEquivOfQuotient_symm_mk, val_unitsCentralizerEquiv_symm_apply_coe, Submodule.unitsQuotEquivRelPic_symm_apply, symm_toContinuousMulEquiv, Equiv.permCongrHom_symm, symmEquiv_apply_apply, funUnique_symm_apply, AlgEquiv.val_algHomUnitsEquiv_symm_apply, CategoryTheory.Functor.FullyFaithful.homMulEquiv_symm_apply, Submonoid.map_equiv_eq_comap_symm, submonoidMap_symm_apply, mulEquivOfOrderOfEq_symm, Submonoid.LocalizationMap.mulEquivOfLocalizations_symm_apply, monoidEndToAdditive_symm_apply_apply, SemidirectProduct.mulEquivProd_symm_apply_left, AddEquiv.toMultiplicativeRight_symm_apply_symm_apply, symm_trans_apply, punitCoprod_symm_apply, coprodComm_symm_apply, AffineEquiv.equivUnitsAffineMap_symm_apply_symm_apply, abelianizationCongr_symm, multiplicativeAdditive_symm_apply, IsFreeGroup.toFreeGroup_apply, AddConstEquiv.equivUnits_symm_apply_apply, AlgEquiv.opComm_apply_symm_apply, coe_prodAssoc_symm, toSemigrpIso_inv, Subsemigroup.mem_map_equiv, MonCat.uliftFunctor_map, CategoryTheory.Functor.FullyFaithful.autMulEquivOfFullyFaithful_symm_apply_inv, MonoidAlgebra.domCongr_symm, ClassGroup.equivPic_symm_apply, CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply, symm_ofLexMulEquiv, SemidirectProduct.congr_symm_apply_right, RingEquiv.piCongrLeft_apply, AffineEquiv.equivUnitsAffineMap_symm_apply_toFun, MulAction.zpowersQuotientStabilizerEquiv_symm_apply, SemidirectProduct.congr'_symm_apply_left, symmEquiv_symm_apply_apply, Subsemigroup.map_equiv_eq_comap_symm, Subring.centerCongr_symm_apply_coe, CoxeterSystem.map_mulEquiv, MulAut.conj_symm_apply, prodProdProdComm_symm, MonoidHom.ker_comp_mulEquiv, AddEquiv.toMultiplicative_symm_apply_symm_apply, toMagmaCatIso_inv, Subgroup.map_equiv_eq_comap_symm', FreeGroupBasis.lift_symm_apply, symmEquiv_symm_apply_symm_apply, toEquiv_symm, MulEquivClass.coe_symm_apply_apply, piUnique_symm_apply, LinearMap.GeneralLinearGroup.congrLinearEquiv_symm, ValuationSubring.coe_unitGroupMulEquiv_symm_apply, AlgEquiv.val_inv_algHomUnitsEquiv_symm_apply, MulAction.stabilizerEquivStabilizer_symm, MulEquivClass.apply_coe_symm_apply, MulAut.congr_apply, Submonoid.leftInvEquiv_symm_eq_inv, ofLeftInverse'_symm_apply, IsCyclic.mulAutMulEquiv_symm_apply_symm_apply, toAdditive_symm_apply_symm_apply, galRestrictHom_symm_apply, inv_symm, Submonoid.LocalizationMap.ofMulEquivOfLocalizations_eq_iff_eq, MonoidAlgebra.mapDomainRingEquiv_apply, toGrpIso_inv, toAdditive_apply_symm_apply, Submonoid.LocalizationMap.mulEquivOfLocalizations_symm_eq_mulEquivOfLocalizations, Equiv.Perm.equivUnitsEnd_symm_apply_symm_apply, Algebra.IsAlgebraic.algEquivEquivAlgHom_symm_apply, toCommMonCatIso_inv, toUnits_symm_apply, Units.coe_opEquiv_symm, MulAutMultiplicative_apply_symm_apply, CommMonCat.uliftFunctor_map, MulAut.inv_symm, nonZeroDivisorsEquivUnits_symm_apply_coe, WithZero.withZeroUnitsEquiv_symm_apply, coprodCongr_symm_apply, PresentedGroup.equivPresentedGroup_symm_apply_of, IsGaloisGroup.mulEquivAlgEquiv_symm_apply, self_trans_symm, Equiv.Perm.equivUnitsEnd_symm_apply_apply, Action.resEquiv_inverse, coprodAssoc_symm_apply_inl, FDRep.of_ρ, Subgroup.IsComplement'.QuotientMulEquiv_symm_apply, symm_comp_eq, MulAut.inv_def, Submonoid.comap_equiv_eq_map_symm, IsCyclic.mulAutMulEquiv_symm_apply_apply, op_symm_apply_symm_apply, CoxeterMatrix.reindexGroupEquiv_symm_apply_simple, Submonoid.leftInvEquiv_symm_fromLeftInv, AddConstEquiv.equivUnits_symm_apply_symm_apply, SemidirectProduct.mulEquivSubgroup_symm_apply, Unitary.conjStarAlgAut_symm_unitaryLinearIsometryEquiv, symm_monoidHomCongrLeft, MonoidAlgebra.symm_mapDomainRingEquiv, coe_toEquiv_symm, symm_bijective, symm_toLexMulEquiv, SemidirectProduct.mulEquivProd_symm_apply_right, Submonoid.LocalizationMap.symm_comp_ofMulEquivOfLocalizations_apply, MulAction.stabilizerEquivStabilizer_inv, ConjAct.to_mul_symm_eq, Subgroup.equivSMul_symm_apply_coe, coprodAssoc_symm_apply_inr_inl, symm_symm, RingEquiv.coe_toMulEquiv_symm, GrpCat.uliftFunctor_map, HNNExtension.equiv_symm_eq_conj, Ideal.associatesNonZeroDivisorsEquivIsPrincipal_coe, QuotientGroup.equivQuotientZPowOfEquiv_symm, subsemigroupMap_symm_apply_coe, monoidHomCongrRightEquiv_symm_apply, subgroupMap_symm_apply, Nonneg.val_inv_unitsEquivPos_symm_apply_coe, Submonoid.val_unitsTypeEquivIsUnitSubmonoid_symm_apply, MonoidHom.toHomUnitsMulEquiv_symm_apply, coe_monoidHom_comp_coe_monoidHom_symm, Equiv.mulEquiv_symm_apply, symm_comapSubgroup, Subgroup.normalizerMonoidHom_apply_symm_apply_coe, symm_mapSubgroup, Subgroup.centerToMulOpposite_symm_apply_coe, Localization.mulEquivOfQuotient_symm_mk', Submonoid.powLogEquiv_symm_apply, FreeGroup.freeGroupCongr_symm, MonoidHom.apply_ofInjective_symm, powersMulHom_symm_apply, MulOpposite.opMulEquiv_symm_apply, QuotientGroup.quotientBot_symm_apply, Submonoid.LocalizationMap.symm_comp_ofMulEquivOfLocalizations_apply', symm_apply_apply, WithZero.toMulBot_symm_bot, rootsOfUnityEquivOfPrimitiveRoots_symm_apply, MonoidAlgebra.domCongr_apply, AddAutAdditive_symm_apply_apply, SkewMonoidAlgebra.domCongr_symm, Subgroup.map_equiv_eq_comap_symm, subgroupCongr_symm_apply, CategoryTheory.ActionCategory.stabilizerIsoEnd_symm_apply, AffineEquiv.equivUnitsAffineMap_symm_apply_invFun, IsCyclotomicExtension.autEquivPow_symm_apply, Rat.ringOfIntegersWithValEquiv_apply, symmEquiv_apply_symm_apply, addMonoidEndToMultiplicative_symm_apply_apply, Subsemigroup.comap_equiv_eq_map_symm, ValuationSubring.principalUnitGroup_symm_apply, Abelianization.equivOfComm_symm_apply, val_inv_piUnits_symm_apply, apply_symm_apply, AddAut.congr_symm_apply, withZero_symm_apply_symm_apply, MulAut.congr_symm_apply, GrpWithZero.Iso.mk_inv, piMultiplicative_symm_apply, Submonoid.mul_leftInvEquiv_symm

MvQPF.wEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MvQPF.WEquivβ€”β€”β€”

NNReal.HolderConjugate

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”NNReal.HolderConjugateβ€”β€”NNReal.HolderTriple.symm

NNReal.HolderTriple

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”NNReal.HolderTripleβ€”β€”inv_add_inv_eq_inv
add_comm
right_pos
left_pos

Nat.ModEq

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Nat.ModEqβ€”β€”β€”

NumberField.ComplexEmbedding.IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalNumberField.ComplexEmbedding.IsConjAlgEquiv.symm
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”RingHom.ext
AlgEquiv.apply_symm_apply
RingHomCompTriple.comp_apply
RingHomInvPair.triplesβ‚‚
RingHomInvPair.instStarRingEnd
RingHomCompTriple.right_ids
eq

OneOneEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”OneOneEquivβ€”β€”β€”

OpenPartialHomeomorph

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
252 mathmath: NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, Trivialization.proj_symm_apply', symm_map_nhds_eq, StructureGroupoid.LocalInvariantProp.liftPropWithinAt_indep_chart', NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, Trivialization.preimageHomeomorph_symm_apply, UniqueMDiffOn.uniqueMDiffOn_preimage, IsImage.symm_apply_mem_iff, subtypeRestr_symm_trans_subtypeRestr, Complex.norm_polarCoord_symm, eventually_left_inverse', restr_target, contDiff_unitBallBall_symm, symm_toPartialEquiv, Complex.integral_comp_pi_polarCoord_symm, symm_piecewise, symm_image_target_eq_source, image_eq_target_inter_inv_preimage, TopologicalSpace.Opens.chartAt_subtype_val_symm_eventuallyEq, StructureGroupoid.LocalInvariantProp.liftPropAt_chart_symm, UniqueMDiffWithinAt.preimage_PartialHomeomorph, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isComplex, lift_openEmbedding_trans_apply, continuousOn_univBall_symm, transHomeomorph_symm_apply, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, ext_iff, ChartedSpace.LiftPropWithinAt.prop, isLittleO_congr, trans'_symm_apply, coe_ofContinuousOpenRestrict_symm, contMDiffOn_chart_symm, Trivialization.contMDiffOn_symm_trans, MDifferentiable.mdifferentiableAt_symm, symm_mapsTo, univUnitBall_symm_apply_zero, self_trans_symm, contMDiffOn_isOpenEmbedding_symm, source_inter_preimage_inv_preimage, toHomeomorphOfSourceEqUnivTargetEqUniv_symm_apply, Complex.integral_comp_polarCoord_symm, HasStrictFDerivAt.localInverse_def, homeomorphOfImageSubsetSource_symm_apply, prod_symm_apply, NumberField.mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, VectorBundleCore.localTriv_symm_fst, Unitary.openPartialHomeomorph_symm_apply, TopologicalSpace.Opens.chartAt_inclusion_symm_eventuallyEq, range_stereographic_symm, eventually_left_inverse, isOpenEmbedding_stereographic_symm, lintegral_comp_pi_polarCoord_symm, eventually_nhdsWithin, trans_source'', Trivialization.symm_apply_eq_mk_continuousLinearEquivAt_symm, mk_coe_symm, refl_symm, continuous_polarCoord_symm, target_inter_inv_preimage_preimage, StructureGroupoid.LocalInvariantProp.liftPropWithinAt_indep_chart_source_aux, Trivialization.domExtend_symm_apply, inv_image_trans_target, leftInvOn, symm_trans_mem_contDiffGroupoid, isBigO_congr, NumberField.mixedEmbedding.polarCoord_symm_apply, lift_openEmbedding_trans, Trivialization.symm_apply_apply, eventually_right_inverse, integral_comp_polarCoord_symm, StructureGroupoid.compatible_of_mem_maximalAtlas, left_inv, StructureGroupoid.LocalInvariantProp.liftPropWithinAt_indep_chart_aux, symm_image_target_inter_eq, ChartedSpace.liftPropAt_iff, Trivialization.map_target, prod_symm, symm_trans_self, Topology.IsOpenEmbedding.toPartialHomeomorph_left_inv, continuousWithinAt_iff_continuousWithinAt_comp_right, extend_coe_symm, restrContDiff_target, UniqueMDiffWithinAt.preimage_openPartialHomeomorph, continuousAt_iff_continuousAt_comp_right, contDiffOn_univUnitBall_symm, subtypeRestr_symm_apply, ChartedSpace.liftProp_iff, image_source_inter_eq, StructureGroupoid.compatible, MDifferentiable.comp_symm_deriv, ext_coord_change_source, restrContDiff_symm_apply, polarCoord_symm_apply, ImplicitFunctionData.implicitFunction_apply, StructureGroupoid.liftPropWithinAt_self_target, isLocalStructomorphOn_contDiffGroupoid_iff, tangentBundle_model_space_coe_chartAt_symm, symm_target, analyticAt_symm', map_target, Trivialization.symm_apply, restrContDiff_source, Complex.lintegral_comp_polarCoord_symm, IsManifold.compatible_of_mem_maximalAtlas, NumberField.mixedEmbedding.fundamentalCone.expMap_symm_apply, Trivialization.apply_symm_apply, NumberField.mixedEmbedding.polarSpaceCoord_symm_apply, Complex.measurableEquivRealProd_symm_polarCoord_symm_apply, IsImage.symm_eqOn_of_inter_eq_of_eqOn, hasFDerivAt_polarCoord_symm, IsImage.restr_symm_apply, StructureGroupoid.LocalInvariantProp.right_invariance', prod_symm_trans_prod, symm_bijective, coe_restrOpen_symm, isOpen_symm_image_iff_of_subset_target, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isReal, ofSet_symm, IsImage.symm_mapsTo, StructureGroupoid.LocalInvariantProp.liftPropAt_symm_of_mem_maximalAtlas, hasFPowerSeriesAt_symm, NumberField.mixedEmbedding.polarCoord_symm_eq, image_source_inter_eq', Trivialization.pullback_symm_apply_snd, lift_openEmbedding_symm, Trivialization.prod_symm_apply_proj, Bundle.Trivial.toOpenPartialHomeomorph_trivialization_symm_apply, Trivialization.prod_symm_apply_snd, IsImage.leftInvOn_piecewise, trans_target', StructureGroupoid.trans_restricted, symm_trans_restr, invFun_eq_coe, tangentMap_chart_symm, Trivialization.symm_coe_proj, IsImage.iff_symm_preimage_eq, symm_image_eq_source_inter_preimage, EqOnSource.symm_eqOn_target, NumberField.mixedEmbedding.fundamentalCone.expMap_single_symm_apply, eventually_nhdsWithin', eq_symm_apply, eventually_nhds', contMDiffAt_symm_of_mem_maximalAtlas, StructureGroupoid.LocalInvariantProp.liftPropWithinAt_iff, eventually_right_inverse', StructureGroupoid.LocalInvariantProp.right_invariance, trans_symm_eq_symm_trans_symm, contDiffOn_restrContDiff_target, extend_symm_continuousWithinAt_comp_right_iff, FiberBundle.writtenInExtChartAt_trivializationAt_symm, pi_symm_apply, Trivialization.apply_symm_apply', StructureGroupoid.LocalInvariantProp.liftPropWithinAt_indep_chart_source, mdifferentiableAt_atlas_symm, restr_symm_apply, Trivialization.mk_coordChange, Trivialization.preimageSingletonHomeomorph_symm_apply, subtypeRestr_symm_eqOn, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, Trivialization.mk_symm, NumberField.mixedEmbedding.measurable_polarCoord_symm, Trivialization.proj_symm_apply, injOn_pi_polarCoord_symm, MDifferentiable.symm_comp_deriv, StructureGroupoid.symm', NumberField.mixedEmbedding.hasFDerivAt_polarCoordReal_symm, rightInvOn, hasFDerivAt_pi_polarCoord_symm, IsImage.symm_image_eq, Homeomorph.toOpenPartialHomeomorphOfImageEq_symm_apply, Trivialization.pullback_symm_apply_proj, lintegral_comp_polarCoord_symm, subtypeRestr_symm_eqOn_of_le, Trivialization.sourceHomeomorphBaseSetProd_symm_apply, Homeomorph.symm_toPartialHomeomorph, Homeomorph.transOpenPartialHomeomorph_symm_apply, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, AddCircle.openPartialHomeomorphCoe_symm_apply, lift_openEmbedding_symm_target, Homeomorph.toOpenPartialHomeomorph_symm_apply, contDiffOn_univBall_symm, writtenInExtChartAt_chartAt_symm_comp, symm_source, invOn, IsImage.iff_symm_preimage_eq', writtenInExtChartAt_chartAt_symm, Real.expPartialHomeomorph_symm_apply, isBigOWith_congr, Trivialization.contMDiffOn_symm, StructureGroupoid.LocalInvariantProp.liftPropOn_symm_of_mem_maximalAtlas, coe_ofContinuousOpen_symm, continuousOn_symm, Structomorph.mem_groupoid, Real.coe_tanPartialHomeomorph_symm, StructureGroupoid.LocalInvariantProp.liftPropWithinAt_indep_chart_target_aux, Complex.lintegral_comp_pi_polarCoord_symm, Complex.polarCoord_symm_apply, stereographic'_symm_apply, Trivialization.apply_symm_apply_eq_coordChangeL, TangentBundle.coe_chartAt_symm_fst, pi_polarCoord_symm_target_ae_eq_univ, preimage_eventuallyEq_target_inter_preimage_inter, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, extChartAt_coe_symm, StructureGroupoid.symm, symm_symm, EqOnSource.symm', Trivialization.symm_apply_mk_proj, Topology.IsOpenEmbedding.toOpenPartialHomeomorph_right_inv, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, tendsto_symm, lift_openEmbedding_symm_source, coe_trans_symm, continuousAt_symm, isOpen_inter_preimage_symm, Bundle.Trivial.trivialization_symm_apply_proj, IsImage.symm, IsImage.symm_preimage_eq', StructureGroupoid.LocalInvariantProp.liftPropOn_chart_symm, coe_coe_symm, extend_coord_change_source, contMDiffOn_symm_of_mem_maximalAtlas, unitBallBall_symm_apply, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, univUnitBall_symm_apply, FiberBundle.chartedSpace_chartAt_symm_fst, Topology.IsOpenEmbedding.toPartialHomeomorph_right_inv, IsImage.symm_preimage_eq, trans_target, Topology.IsOpenEmbedding.toOpenPartialHomeomorph_left_inv, IsImage.symm_iff, mdifferentiableOn_atlas_symm, Homeomorph.symm_toOpenPartialHomeomorph, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, integral_comp_pi_polarCoord_symm, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, isOpen_image_symm_of_subset_target, univBall_symm_apply_center, Trivialization.coordChangeL_apply', HasGroupoid.compatible, StructureGroupoid.LocalInvariantProp.liftPropWithinAt_indep_chart, Bundle.Trivial.trivialization_symm_apply_snd, restr_symm_trans, toHomeomorphSourceTarget_symm_apply_coe, FiberBundleCore.localTriv_symm_apply, mem_maximalAtlas_iff, mem_groupoid_of_pregroupoid, right_inv, MDifferentiable.symm, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm, ChartedSpace.liftPropWithinAt_iff'

OpenPartialHomeomorph.IsImage

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalOpenPartialHomeomorph.IsImageOpenPartialHomeomorph.symmβ€”PartialEquiv.IsImage.symm
toPartialEquiv

OpenPartialHomeomorph.MDifferentiable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalOpenPartialHomeomorph.MDifferentiableOpenPartialHomeomorph.symmβ€”β€”

OrderAddMonoidIso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
19 mathmath: symm_comp_self, toEquiv_symm, symm_comp_eq, strictMono_symm, eq_symm_comp, equivLike_neg_eq_symm, coe_toEquiv_symm, symm_apply_eq, refl_symm, eq_comp_symm, self_comp_symm, symm_bijective, apply_symm_apply, symm_symm, comp_symm_eq, apply_eq_iff_symm_apply, invFun_eq_symm, symm_apply_apply, eq_symm_apply

OrderIso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
213 mathmath: IsLocalization.AtPrime.coe_primeSpectrumOrderIso_symm_apply_asIdeal, isLUB_image, CategoryTheory.ComposableArrows.opEquivalence_counitIso_inv_app_app, pnatIsoNat_symm_apply, symm_trans, toRelIsoLT_symm, arrowCongr_apply, WithBot.orderIsoPUnitSumLex_symm_inl, isGLB_preimage', symm_trans_apply, coe_dualDual_symm, finSuccAboveOrderIso_symm_apply_last, StrictMono.orderIsoOfSurjective_symm_apply_self, WithBot.subtypeOrderIso_symm_apply, mulRightβ‚€_symm, Sublattice.map_equiv_eq_comap_symm, sumLexIicIoi_symm_apply_of_lt, symm_mk, List.SortedLT.coe_getIso_symm_apply, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe, invENNReal_symm_apply, Ordinal.toNimber_symm_eq, preimage_Ioc, Tropical.tropOrderIso_symm_coe_fn, WithBot.orderIsoPUnitSumLex_symm_inr, image_symm_image, ENNReal.orderIsoRpow_symm_apply, Flag.symm_map, UpperSet.mem_map, sumLexIioIci_symm_apply_Ici, dualAntisymmetrization_symm_apply, sumCongr_symm, apply_symm_apply, isGLB_image, EReal.expOrderIso_symm, sumLexAssoc_symm_apply_inr_inr, StrictMono.orderIsoOfSurjective_self_symm_apply, Finset.orderIsoOfFin_symm_apply, addLeft_symm, SemilatSupCat.Iso.mk_inv_toFun, IsLocalization.AtPrime.coe_orderIsoOfPrime_symm_apply_coe, HeytAlg.Iso.mk_inv, infIrredUpperSet_symm_apply, image_setOf_maximal, strictConvexOn_symm, toRelIsoGT_symm, symm_symm, IsOrderRightAdjoint.comp_orderIso, Fin.symm_castOrderIso, sumLexIicIoi_symm_apply_of_le, map_sInf_eq_sInf_symm_preimage, supIrredLowerSet_symm_apply, CircleDeg1Lift.coe_toOrderIso_symm, PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot, DistLat.Iso.mk_inv, to_galoisConnection, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, coe_symm_toEquiv, preimage_Ioo, sumComm_symm, WithTop.orderIsoSumLexPUnit_symm_inl, toEquiv_symm, UpperSet.symm_map, LowerSet.symm_map, AddSubgroup.toIntSubmodule_symm, Lat.Iso.mk_inv, concaveOn_symm, sumLexIioIci_symm_apply_Iio, mem_subalgebraEquivIntermediateField_symm, WithTop.toDualBotEquiv_symm_top, AddEquiv.symm_mapAddSubgroup, PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf, map_sSup_eq_sSup_symm_preimage, List.Sorted.coe_getIso_symm_apply, sumDualDistrib_symm_inl, Real.log_of_pos, RingEquiv.mapTwoSidedIdeal_symm, withTopCongr_symm, Frm.Iso.mk_inv, ENNReal.orderIsoIicCoe_symm_apply_coe, NonemptyFinLinOrd.Iso.mk_inv, ENNReal.logOrderIso_symm, symm_bijective, conj_apply, symm_apply_eq, FiniteMulArchimedeanClass.withTopOrderIso_symm_apply, sumLexIicIoi_symm_apply_Iic, arrowCongr_symm_apply, WithTop.subtypeOrderIso_symm_apply, CategoryTheory.ComposableArrows.opEquivalence_inverse_obj, preimage_Iio, image_setOf_minimal, symm_preimage_preimage, IsGalois.intermediateFieldEquivSubgroup_symm_apply_toDual, sumLexIicIoi_symm_apply_Ioi, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, lt_symm_apply, AddSubgroup.toZModSubmodule_symm, Ideal.idealProdEquiv_symm_apply, Submodule.orderIsoMapComap_symm_apply', RingEquiv.idealComapOrderIso_symm_apply, PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup, AddSubmonoid.toNatSubmodule_symm, equivalence_counitIso, Fintype.coe_finsetOrderIsoSet_symm, sumAssoc_symm_apply_inr_inl, preimage_Icc, LowerSet.mem_map, Homeomorph.opensCongr_symm, Submodule.orderIsoMapComap_symm_apply, idealFactorsEquivOfQuotEquiv_symm, WithBot.toDualTopEquiv_symm_bot, coe_symm_toRelIsoGT, IsGalois.intermediateFieldEquivSubgroup_symm_apply, sumLexAssoc_symm_apply_inr_inl, Finsupp.coe_orderIsoMultiset_symm, WithBot.toDualTopEquiv_symm_coe, Module.AEval.mem_mapSubmodule_symm_apply, Sublattice.comap_equiv_eq_map_symm, FiniteMulArchimedeanClass.congrOrderIso_symm, Antisymmetrization.prodEquiv_symm_apply_mk, apply_eq_iff_eq_symm_apply, SemilatInfCat.Iso.mk_inv_toFun, PrimeSpectrum.basicOpen_isIdempotentElemEquivClopens_symm, LinOrd.Iso.mk_inv, BddOrd.Iso.mk_inv, sumDualDistrib_symm_inr, NNReal.orderIsoIccZeroCoe_symm_apply_coe, preimage_Ici, PrimeSpectrum.comapEquiv_symm, Fin.revOrderIso_symm_apply, symm_trans_self, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply, FiniteArchimedeanClass.congrOrderIso_symm, mulLeft_symm, AddSubgroup.MapSubtype.orderIso_symm_apply, coe_symm_toRelIsoLT, symm_apply_le, FiniteArchimedeanClass.withTopOrderIso_symm_apply, WithTop.toDualBotEquiv_symm_coe, NNReal.orderIsoRpow_symm_eq, equivalence_inverse, equivClosureOperator_symm_apply, sumLexDualAntidistrib_symm_inl, FinPartOrd.Iso.mk_inv, preimage_Ioi, PrimeSpectrum.isIdempotentElemEquivClopens_symm_top, preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_hom_coe', le_symm_apply, ofHomInv_symm_apply, symm_apply_lt, sumLexIioIci_symm_apply_of_ge, prodComm_symm, sumLexCongr_symm, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, IsDedekindDomain.primesOverEquivPrimesOver_symm_apply, NatOrdinal.toOrdinal_symm_eq, sumAssoc_symm_apply_inr_inr, orderIsoShrink_symm_apply, nucleusIsoSublocale.symm_eq_toNucleus, preimage_symm_preimage, AddEquiv.symm_comapAddSubgroup, DivisibleHull.archimedeanClassOrderIso_symm_apply, WithTop.orderIsoSumLexPUnit_symm_inr, Preord.Iso.mk_inv, symm_apply_apply, PartOrd.Iso.mk_inv, convexOn_symm, funUnique_symm_apply, mulLeftβ‚€_symm, image_eq_preimage_symm, BooleanSubalgebra.mem_map_equiv, Sublattice.map_symm_eq_iff_eq_map, symm_refl, mulRight_symm, Nimber.toOrdinal_symm_eq, Ideal.comap_fiberIsoOfBijectiveResidueField_symm, CategoryTheory.Equivalence.toOrderIso_symm_apply, alexDiscEquivPreord_counitIso, addRight_symm, strictConcaveOn_symm, symm_image_image, sumAssoc_symm_apply_inl, isLUB_preimage', MulEquiv.symm_comapSubgroup, MulEquiv.symm_mapSubgroup, CategoryTheory.ComposableArrows.opEquivalence_counitIso_hom_app_app, sumLexDualAntidistrib_symm_inr, ofRelIsoLT_symm, Real.log_of_ne_zero, dual_symm_apply, coe_toHomeomorph_symm, sumLexAssoc_symm_apply_inl, preimage_Ico, equivalence_unitIso, PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl, Finset.sumEquiv_symm_apply, Sublattice.mem_map_equiv, CompleteLat.Iso.mk_inv, sumLexIioIci_symm_apply_of_lt, ENNReal.orderIsoIicOneBirational_symm_apply, self_trans_symm, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply_toDual, PartOrdEmb.Iso.mk_inv, Ordinal.toNatOrdinal_symm_eq, Module.mapEvalEquiv_symm_apply, symm_injective, IsOrderRightAdjoint.orderIso_comp, dualDual_symm_apply, symm_dual, preimage_Iic, Subgroup.MapSubtype.orderIso_symm_apply, withBotCongr_symm

OrderMonoidIso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
28 mathmath: apply_symm_apply, val_inv_unitsWithZero_symm_apply, withZero_symm_apply_symm_apply, val_unitsCongr_symm_apply, Submonoid.topOrderMonoidIso_symm_apply_coe, invFun_eq_symm, symm_symm, symm_apply_apply, symm_comp_self, val_inv_unitsCongr_symm_apply, withZeroUnits_symm_apply, equivLike_inv_eq_symm, val_unitsWithZero_symm_apply, eq_symm_apply, withZero_apply_symm_apply, symm_comp_eq, PNat.equivNonZeroDivisorsNat_symm_apply_coe, strictMono_symm, self_comp_symm, apply_eq_iff_symm_apply, comp_symm_eq, symm_apply_eq, refl_symm, coe_toEquiv_symm, symm_bijective, eq_symm_comp, eq_comp_symm, toEquiv_symm

OrderRingIso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
11 mathmath: symm_bijective, apply_symm_apply, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, symm_symm, symm_apply_apply, lt_symm_apply, self_trans_symm, LinearOrderedField.inducedOrderRingIso_symm, symm_trans_self, symm_apply_lt, Valuation.IsEquiv.orderRingIso_symm_apply

Ordnode.BalancedSz

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Ordnode.BalancedSzβ€”β€”add_comm

PEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
17 mathmath: toMatrix_symm, mem_iff_mem, trans_symm_eq_iff_forall_isSome, symm_symm, ofSet_symm, mul_toMatrix_apply, symm_single, Equiv.toPEquiv_symm, isSome_symm_get, symm_trans_self, symm_refl, symm_bijective, eq_some_iff, symm_trans_rev, symm_injective, symm_bot, self_trans_symm

PNat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”PNat.Coprimeβ€”β€”PNat.gcd_comm

PSet.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”PSet.Equivβ€”β€”euc
refl

PartialDiffeomorph

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

PartialEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
248 mathmath: restr_target, contMDiffAt_iff_of_mem_source, OpenPartialHomeomorph.extend_preimage_inter_eq, SmoothBumpFunction.support_eq_symm_image, extChartAt_to_inv, ApproximatesLinearOn.inverse_continuousOn, OpenPartialHomeomorph.symm_toPartialEquiv, Pretrivialization.preimage_symm_proj_inter, MDifferentiableWithinAt.differentiableWithinAt_mpullbackWithin_vectorField, mdifferentiableOn_iff, mdifferentiableWithinAt_iff_of_mem_maximalAtlas, ChartedSpaceCore.continuousOn_toFun, contMDiffAt_iff_source, eventually_enorm_mfderivWithin_symm_extChartAt_lt, Equidecomp.restr_invFun, TangentBundle.symmL_trivializationAt, Topology.RelCWComplex.continuousOn_symm, ContinuousWithinAt.extChartAt_symm_preimage_inter_range_eventuallyEq, map_extChartAt_symm_nhdsWithin, symm_symm, map_target, eq_symm_apply, mdifferentiableWithinAt_iff_target_inter, contMDiffWithinAt_iff_image, tangentCoordChange_def, map_extChartAt_symm_nhdsWithin', FiberPrebundle.continuous_trivChange, map_extChartAt_symm_nhdsWithin_range', IsImage.iff_symm_preimage_eq, extChartAt_preimage_inter_eq, FiberPrebundle.continuous_symm_of_mem_pretrivializationAtlas, map_extChartAt_symm_nhdsWithin_range, map_extChartAt_nhdsWithin', OpenPartialHomeomorph.coe_ofContinuousOpenRestrict_symm, inTangentCoordinates_eq_mfderiv_comp, Equiv.transPartialEquiv_symm_apply, symm_image_target_eq_source, MDifferentiableWithinAt.differentiableWithinAt_writtenInExtChartAt, ModelWithCorners.mk_symm, OpenPartialHomeomorph.continuousAt_extend_symm', transEquiv_symm_apply, IsImage.restr_symm_apply, extChartAt_preimage_mem_nhdsWithin', Equiv.toPartialEquiv_symm_apply, trans_target', symm_trans_self, eventually_norm_mfderivWithin_symm_extChartAt_lt, image_eq_target_inter_inv_preimage, UniqueMDiffOn.uniqueDiffOn_target_inter, mapsTo_extChartAt, preimage_extChartAt_eventuallyEq_compl_singleton, trans_source'', Pretrivialization.mk_symm, Pretrivialization.preimage_symm_proj_baseSet, UniqueMDiffOn.uniqueMDiffOn_target_inter, contMDiffAt_iff_source_of_mem_source, symm_piecewise, Manifold.IsImmersionAt.writtenInCharts, OpenPartialHomeomorph.mk_coe_symm, symm_image_target_inter_eq, SmoothBumpFunction.tsupport_subset_symm_image_closedBall, Trivialization.domExtend_symm_apply, TangentBundle.trivializationAt_apply, prod_coe_symm, IsImage.symm_preimage_eq, OpenPartialHomeomorph.contDiffOn_extend_coord_change, OpenPartialHomeomorph.continuousWithinAt_writtenInExtend_iff, Trivialization.prod_symm_apply, Equiv.toPartialEquivOfImageEq_symm_apply, mem_symm_trans_source, OpenPartialHomeomorph.map_extend_symm_nhdsWithin, IsImage.leftInvOn_piecewise, extChartAt_mem_closure_interior, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm, restr_coe_symm, extChartAt_preimage_mem_nhds, EqOnSource.symm_eqOn, IsImage.symm_mapsTo, invFun_as_coe, OpenPartialHomeomorph.contDiffWithinAt_extend_coord_change', contMDiffWithinAt_iff_of_mem_source', mdifferentiableWithinAt_iff_image, OpenPartialHomeomorph.extend_coord_change_source_mem_nhdsWithin', injective_symm_of_target_eq_univ, mdifferentiableOn_extChartAt_symm, OpenPartialHomeomorph.continuousOn_extend_symm, VectorField.mlieBracketWithin_def, OpenPartialHomeomorph.extend_left_inv, single_symm_apply, Pretrivialization.apply_symm_apply, target_subset_preimage_source, mdifferentiable_iff, contMDiffAt_iff, OpenPartialHomeomorph.extend_coe_symm, contMDiffOn_iff_of_mem_maximalAtlas', extChartAt_preimage_mem_nhdsWithin, contMDiffOn_extChartAt_symm, extChartAt_preimage_mem_nhds', contMDiffWithinAt_extChartAt_symm_range_self, Pretrivialization.symm_apply, OpenPartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq_aux, OpenPartialHomeomorph.continuousOn_writtenInExtend_iff, mdifferentiableOn_iff_of_subset_source, contMDiffWithinAt_iff_source_of_mem_maximalAtlas, ext_coord_change_source, contMDiffOn_iff_of_subset_source', Pretrivialization.symm_apply_mk_proj, FiberPrebundle.isOpen_target_of_mem_pretrivializationAtlas_inter, Equidecomp.left_inv, source_inter_preimage_inv_preimage, right_inv, Pretrivialization.proj_symm_apply', hasFDerivWithinAt_tangentCoordChange, ContinuousWithinAt.nhdsWithin_extChartAt_symm_preimage_inter_range, MDifferentiableWithinAt.mfderivWithin, contMDiffWithinAt_iff, symm_bijective, OpenPartialHomeomorph.extend_image_source_inter, ofSet_symm, piecewise_symm_apply, Pretrivialization.symm_coe_proj, image_symm_image_of_subset_target, OpenPartialHomeomorph.extend_preimage_mem_nhds, symm_image_target_inter_eq', tangentBundleCore_coordChange, Pretrivialization.symm_trans_target_eq, contDiffOn_fderiv_coord_change, SmoothBumpFunction.isClosed_symm_image_closedBall, refl_symm, symm_source, mdifferentiableWithinAt_iff', Equidecomp.right_inv, symm_mapsTo, continuousAt_extChartAt_symm, contMDiffWithinAt_iff', Trivialization.symm_trans_target_eq, ModelWithCorners.coe_extChartAt_transContinuousLinearEquiv_symm, image_source_inter_eq', uniqueMDiffWithinAt_iff, VectorField.eventuallyEq_mpullback_mpullbackWithin_extChartAt, IsImage.symm_image_eq, map_extChartAt_nhdsWithin, contMDiffOn_iff, EqOnSource.symm', UniqueMDiffOn.uniqueDiffOn_inter_preimage, mdifferentiableWithinAt_iff_target_inter', contMDiffOn_iff_source_of_mem_maximalAtlas, contMDiffWithinAt_extChartAt_symm_target_self, contMDiff_iff, mdifferentiableOn_iff_of_mem_maximalAtlas', uniqueMDiffWithinAt_iff_inter_range, continuousOn_extChartAt_symm, symm_target, contDiffOn_ext_coord_change, writtenInExtChartAt_extChartAt_symm, symm_image_eq_source_inter_preimage, mdifferentiableWithinAt_iff_of_mem_source', VectorField.contMDiffWithinAt_mpullbackWithin_extChartAt_symm, mdifferentiableWithinAt_iff_source_of_mem_maximalAtlas, mdifferentiableWithinAt_iff, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm', Pretrivialization.trans_source, contMDiffWithinAt_extChartAt_symm_target, prod_symm, FiberBundle.extChartAt_target, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt', OpenPartialHomeomorph.extend_symm_continuousWithinAt_comp_right_iff, contMDiffOn_iff_of_mem_maximalAtlas, OpenPartialHomeomorph.map_extend_nhdsWithin, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt, ext_iff, IsImage.symm_iff, Real.cosPartialEquiv_symm_apply, image_source_inter_eq, contMDiffWithinAt_iff_source, Pretrivialization.symm_apply_apply, contMDiffWithinAt_iff_source_of_mem_source, contMDiffOn_iff_of_subset_source, contMDiffWithinAt_iff_of_mem_maximalAtlas, trans_symm_eq_symm_trans_symm, disjointUnion_symm_apply, mdifferentiableAt_iff_source_of_mem_source, mdifferentiableAt_iff_of_mem_source, Manifold.IsImmersionAtOfComplement.writtenInCharts, OpenPartialHomeomorph.continuousAt_extend_symm, mdifferentiableWithinAt_extChartAt_symm, contMDiffWithinAt_extChartAt_symm_range, coe_symm_mk, ChartedSpaceCore.open_source, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, OpenPartialHomeomorph.extend_preimage_mem_nhdsWithin, Trivialization.symm_trans_source_eq, Pretrivialization.continuousLinearMap_symm_apply, contMDiffOn_extend_symm, symm_image_image_of_subset_source, surjective_symm_of_source_eq_univ, IsImage.symm, mdifferentiableWithinAt_iff_source_of_mem_source, leftInvOn, Set.BijOn.toPartialEquiv_symm_apply, OpenPartialHomeomorph.coe_ofContinuousOpen_symm, inv_image_trans_target, IsImage.symm_eq_on_of_inter_eq_of_eqOn, trans'_symm_apply, left_inv, OpenPartialHomeomorph.extend_left_inv', extChartAt_coe_symm, continuousAt_extChartAt_symm'', mdifferentiableWithinAt_iff_of_mem_source, OpenPartialHomeomorph.map_extend_symm_nhdsWithin_range, isInvertible_mfderivWithin_extChartAt_symm, VectorField.mlieBracketWithin_apply, target_inter_inv_preimage_preimage, Pretrivialization.symm_trans_symm, trans_target, Pretrivialization.proj_symm_apply, VectorField.eventually_contMDiffWithinAt_mpullbackWithin_extChartAt_symm, self_trans_symm, OpenPartialHomeomorph.coe_coe_symm, OpenPartialHomeomorph.extend_coord_change_source, Topology.CWComplex.continuousOn_symm, Pretrivialization.apply_symm_apply', Equiv.symm_toPartialEquiv, Equidecomp.symm_toPartialEquiv, OpenPartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq, Circle.argPartialEquiv_symm_apply, continuousAt_extChartAt_symm', invOn, IsImage.symm_apply_mem_iff, OpenPartialHomeomorph.mapsTo_extend, Equidecomp.restr_target, Pretrivialization.symm_trans_source_eq, mdifferentiableOn_iff_of_mem_maximalAtlas, writtenInExtChartAt_comp, Pretrivialization.target_inter_preimage_symm_source_eq, mdifferentiableOn_iff_of_subset_source', rightInvOn, FiberBundleCore.localTrivAsPartialEquiv_symm, coe_trans_symm, FiberBundleCore.localTrivAsPartialEquiv_trans, ApproximatesLinearOn.to_inv, contMDiffWithinAt_iff_of_mem_source, pi_symm, ModelWithCorners.toPartialEquiv_coe_symm, SmoothBumpFunction.image_eq_inter_preimage_of_subset_support, tangentBundleCore_coordChange_achart, pi_symm_apply, SmoothBumpFunction.isCompact_symm_image_closedBall

PartialEquiv.IsImage

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalPartialEquiv.IsImagePartialEquiv.symmβ€”symm_apply_mem_iff

Path

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
27 mathmath: symm_bijective, CurveIntegrable.symm, uniformContinuous_symm, extend_symm_apply, continuous_symm, curveIntegralFun_symm_apply, Homotopic.trans_symm, Homotopic.symmβ‚‚, symm_continuous_family, GenLoop.fromLoop_symm_toLoop, symm_apply, symm_symm, symm_cast, curveIntegral_symm, segment_symm, curveIntegrable_symm, Homotopic.symm_trans, trans_symm, refl_symm, symm_subpath, extend_symm, map_symm, curveIntegralFun_symm, cast_symm, Homotopic.Quotient.mk_symm, Homotopy.symmβ‚‚_apply, symm_range

Path.Homotopic

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Path.Homotopicβ€”Nonempty.map

Path.Homotopic.Quotient

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
3 mathmath: trans_symm, symm_trans, mk_symm

Path.Homotopy

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_trans, symm_bijective, symm_apply, symm_symm

Pretrivialization

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
17 mathmath: linearEquivAt_symm_apply, continuousLinearMap_symm_apply', VectorPrebundle.mk_contMDiffCoordChange, symm_apply_apply_mk, continuousLinearMapCoordChange_apply, mk_symm, apply_mk_symm, symm_apply, symm_proj_apply, symmβ‚—_apply, VectorPrebundle.exists_coordChange, VectorPrebundle.mk_coordChange, VectorPrebundle.IsContMDiff.exists_contMDiffCoordChange, symm_apply_of_notMem, VectorPrebundle.coordChange_apply, coe_symm_of_notMem, VectorPrebundle.contMDiffCoordChange_apply

ProbabilityTheory.CondIndep

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.CondIndep
β€”β€”ProbabilityTheory.CondIndepSets.symm

ProbabilityTheory.CondIndepFun

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.CondIndepFun
β€”β€”ProbabilityTheory.Kernel.IndepFun.symm

ProbabilityTheory.CondIndepSets

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.CondIndepSets
β€”β€”ProbabilityTheory.Kernel.IndepSets.symm

ProbabilityTheory.IdentDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”aemeasurable_snd
aemeasurable_fst
map_eq

ProbabilityTheory.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.Indepβ€”β€”ProbabilityTheory.IndepSets.symm

ProbabilityTheory.IndepFun

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.IndepFunβ€”β€”ProbabilityTheory.Kernel.IndepFun.symm

ProbabilityTheory.IndepSets

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.IndepSetsβ€”β€”ProbabilityTheory.Kernel.IndepSets.symm

ProbabilityTheory.Kernel.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.Kernel.Indepβ€”β€”ProbabilityTheory.Kernel.IndepSets.symm

ProbabilityTheory.Kernel.IndepFun

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.Kernel.IndepFunβ€”β€”ProbabilityTheory.Kernel.Indep.symm

ProbabilityTheory.Kernel.IndepSets

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ProbabilityTheory.Kernel.IndepSetsβ€”β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Filter.univ_mem'
Set.inter_comm
mul_comm

PseudoMetric

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”DFunLike.coe
PseudoMetric
instFunLikeForall
β€”symm'

PythagoreanTriple

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”PythagoreanTripleβ€”β€”pythagoreanTriple_comm

QPF.Wequiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”QPF.Wequivβ€”β€”β€”

QuadraticMap.Equivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”QuadraticMap.Equivalentβ€”β€”

QuadraticMap.IsOrtho

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”QuadraticMap.IsOrthoβ€”β€”QuadraticMap.isOrtho_comm

QuadraticMap.IsometryEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
11 mathmath: QuadraticForm.tensorRId_symm_apply, QuadraticForm.tensorLId_symm_apply, QuadraticForm.tensorAssoc_symm_apply, QuadraticModuleCat.toIsometry_inv_rightUnitor, QuadraticModuleCat.toIsometry_inv_leftUnitor, CliffordAlgebra.equivOfIsometry_symm, QuadraticForm.tensorComm_symm, QuadraticModuleCat.ofIso_inv, QuadraticModuleCat.ofIso_symm, CategoryTheory.Iso.toIsometryEquiv_symm, QuadraticModuleCat.hom_inv_associator

Rack.PreEnvelGroupRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Rack.PreEnvelGroupRelβ€”β€”Rack.PreEnvelGroupRel'.rel

Real.HolderConjugate

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Real.HolderConjugateβ€”β€”Real.HolderTriple.symm

Real.HolderTriple

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Real.HolderTripleβ€”β€”inv_add_inv_eq_inv
add_comm
right_pos
left_pos

RelEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”β€”β€”β€”map_rel_iff
symm

RelIso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
149 mathmath: IsLocalization.AtPrime.coe_primeSpectrumOrderIso_symm_apply_asIdeal, TwoSidedIdeal.orderIsoRingCon_symm_apply, ULift.orderIso_symm_apply_down, YoungDiagram.transposeOrderIso_symm_apply, OrderIso.toRelIsoLT_symm, OrderIso.mulRightβ‚€_symm_apply, TopologicalSpace.Closeds.complOrderIso_symm_apply, AddSubsemigroup.coe_toSubsemigroup_symm_apply, PrimeSpectrum.equivSubtype_symm_apply_asIdeal, relHomCongr_symm_apply, OrderIso.divRight_symm_apply, ENNReal.mulRightOrderIso_symm_apply, coe_fn_symm_mk, OrderHom.piIso_symm_apply, Ordinal.enum_symm_apply_coe, MulEquiv.comapSubgroup_symm_apply, Submonoid.coe_invOrderIso_symm_apply, Ordinal.isInitialIso_symm_apply_coe, Subsemigroup.opEquiv_symm_apply, preimage_eq_image_symm, IsLocalization.coe_primeSpectrumOrderIso_symm_apply_asIdeal, OrderIso.inv_symm_apply, IsLocalization.AtPrime.coe_orderIsoOfPrime_symm_apply_coe, TopologicalSpace.Opens.complOrderIso_symm_apply, OrderIso.toRelIsoGT_symm, Equiv.toOrderIsoSet_symm_apply, symm_symm, Prod.Lex.prodLexAssoc_symm_apply, WithZero.expOrderIso_symm_apply, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, Fin.insertNthOrderIso_symm_apply, symm_bijective, cast_symm, OrderIso.divRightβ‚€_symm_apply, OrderIso.finsetSetFinite_symm_apply, TwoSidedIdeal.orderIsoIsTwoSided_symm_apply, TwoSidedIdeal.opOrderIso_symm_apply, Prod.Lex.sumLexProdLexDistrib_symm_apply, OrderIso.subRight_symm_apply, OrderIso.withBotCongr_symm_apply, upperSetIsoLowerSet_symm_apply, symm_apply_eq, OrderIso.withZeroUnits_symm_apply, relHomCongr_apply, LieSubmodule.orderIsoMapComap_symm_apply, AddSubsemigroup.opEquiv_symm_apply, sumLexEmpty_symm_apply, InitialSeg.antisymm_symm, subrelUnivIso_symm_apply, StrictMono.orderIsoOfRightInverse_symm_apply, SimpleGraph.boxProdComm_symm_apply, OrderIso.setCongr_symm_apply, OrderIso.smulRight_symm_apply, infIooOrderIsoIooSup_symm_apply_coe, AddSubmonoid.coe_negOrderIso_symm_apply, self_trans_symm, Con.orderIsoOp_symm_apply, symm_apply_apply, rel_symm_apply, AddEquiv.mapAddSubgroup_symm_apply, Subgroup.coe_toAddSubgroup_symm_apply, Sum.Lex.toLexRelIsoLE_symm_coe, OrderIso.arrowCongr_symm_apply, OrderIso.compl_symm_apply, OrderIso.prodAssoc_symm_apply, OrderIso.ofUnique_symm_apply, apply_eq_iff_eq_symm_apply, ENNReal.mulLeftOrderIso_symm_apply, symm_apply_rel, symm_comp_self, AddSubgroup.orderIsoAddCon_symm_apply_coe, refl_symm, MulEquiv.mapSubgroup_symm_apply, symm_symm_apply, Submodule.orderIsoMapComapOfBijective_symm_apply, Fin.snocOrderIso_symm_apply, Subsemiring.opEquiv_symm_apply, AddSubgroup.opEquiv_symm_apply, PrincipalSeg.subrelIso_symm_apply, Ordinal.ToType.mk_symm_apply_coe, apply_symm_apply, OrderIso.coe_symm_toRelIsoGT, compl_symm_apply, symm_trans_apply, OrderIso.neg_symm_apply, symm_trans_self, RingCon.opOrderIso_symm_apply, Fin.castLEOrderIso_symm_apply, Fin.consOrderIso_symm_apply, SimpleGraph.Iso.boxProdSumDistrib_symm_apply, IntermediateField.extendScalars.orderIso_symm_apply_coe, OrderIso.mulLeftβ‚€_symm_apply, IsLocalization.orderIsoOfPrime_symm_apply_coe, Fin.castOrderIso_symm_apply, TwoSidedIdeal.orderIsoMatrix_symm_apply_ringCon_r, Subgroup.opEquiv_symm_apply, OrderIso.coe_symm_toRelIsoLT, mkFactorOrderIsoOfFactorDvdEquiv_symm_apply_coe, CategoryTheory.Subobject.mapIsoToOrderIso_symm_apply, Subsemigroup.coe_toAddSubsemigroup_symm_apply, AddSubmonoid.coe_toSubmonoid_symm_apply, SimpleGraph.Subgraph.spanningCoeEquivCoeOfSpanning_symm_apply, emptySumLex_symm_apply, Subrepresentation.subrepresentationSubmoduleOrderIso_symm_apply, CategoryTheory.Subfunctor.orderIsoSubobject_symm_apply, SimpleGraph.boxProdAssoc_symm_apply, image_eq_preimage_symm, OrderHom.curry_symm_apply, Fin.orderIsoSubtype_symm_apply, Ideal.coe_piOrderIso_symm_apply, OrderIso.subLeft_symm_apply, Subgroup.orderIsoCon_symm_apply_coe, SimpleGraph.Iso.sumBoxProdDistrib_symm_apply, Submonoid.coe_toAddSubmonoid_symm_apply, Subalgebra.opEquiv_symm_apply, self_comp_symm, Subring.opEquiv_symm_apply, SimpleGraph.induceUnivIso_symm_apply_coe, OrderIso.smulRightDual_symm_apply, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, OrderHom.prodIso_symm_apply, ValuationSubring.coe_primeSpectrumOrderEquiv_symm_apply_asIdeal, OrderIso.divLeft_symm_apply, OrderIso.setIsotypicComponents_symm_apply, Subfield.extendScalars.orderIso_symm_apply_coe, Sum.Lex.toLexRelIsoLT_symm_coe, infIccOrderIsoIccSup_symm_apply_coe, AddCon.orderIsoOp_symm_apply, OrderIso.withTopCongr_symm_apply, Concept.swapEquiv_symm_apply, AddSubmonoid.opEquiv_symm_apply, Finset.orderIsoColex_symm_apply, preimage_symm_apply, Ordinal.toZFSetIso_symm_apply, OrderIso.ofRelIsoLT_symm, OrderIso.asBoolAlgAsBoolRing_symm_apply, CategoryTheory.Abelian.subobjectIsoSubobjectOp_symm_apply, Sublattice.prodEquiv_symm_apply, AddSubgroup.coe_toSubgroup_symm_apply, WithZero.val_logOrderIso_symm_apply, Submonoid.opEquiv_symm_apply, Real.sinhOrderIso_symm_apply, SimpleGraph.Iso.sumAssoc_symm_apply, WithZero.val_inv_logOrderIso_symm_apply, eq_symm_apply, AddEquiv.comapAddSubgroup_symm_apply, SimpleGraph.Iso.sumComm_symm_apply, Subrepresentation.submoduleSubrepresentationOrderIso_symm_apply, AlgebraicGeometry.IsOpenImmersion.affineOpensEquiv_symm_apply_coe

Relation.SymmGen

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Relation.SymmGenβ€”β€”β€”

Relator.BiTotal

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Relator.BiTotalβ€”β€”Relator.RightTotal.symm
Relator.LeftTotal.symm

Relator.LeftTotal

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalRelator.LeftTotalRelator.RightTotalβ€”β€”

Relator.RightTotal

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalRelator.RightTotalRelator.LeftTotalβ€”Relator.LeftTotal.symm

RingCon

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”DFunLike.coe
RingCon
instFunLikeForallProp
β€”β€”Setoid.symm'

RingEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
311 mathmath: RCLike.sqrt_eq_ite, apply_symm_apply, restrict_symm_apply_coe, toRingCatIso_inv, Polynomial.roots_expand, toOpposite_symm_apply, symm_mk, AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, iterateFrobeniusEquiv_symm_add, BitVec.equivFin_symm_apply_toFin, MvPolynomial.mapEquiv_symm, iterateFrobeniusEquiv_symm_add_apply, coe_frobeniusEquiv_symm_comp_coe_frobenius, coe_prodComm_symm, Ideal.quotientEquiv_symm_apply, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, DoubleQuot.coe_quotQuotEquivQuotOfLEₐ_symm, FDRep.endRingEquiv_symm_comp_ρ, RingHom.quotientKerEquivOfSurjective_symm_apply, WittVector.IsocrystalHom.frob_equivariant, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, WittVector.frobeniusEquiv_symm_apply, Ideal.comap_symm, NonUnitalSubsemiring.mem_map_equiv, MvPolynomial.mvPolynomialEquivMvPolynomial_symm_apply, PowerBasis.quotientEquivQuotientMinpolyMap_apply, NonUnitalSubring.map_equiv_eq_comap_symm, Submodule.LinearDisjoint.op, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, toCommSemiRingCatIso_inv, mopMatrix_symm_apply, DoubleQuot.quotQuotEquivQuotOfLEₐ_symm_toRingEquiv, NonUnitalSubsemiring.centerCongr_symm_apply_coe, ofLeftInverse_symm_apply, op_apply_symm_apply, RingCon.comapQuotientEquivRange_symm_mk, piCongrLeft_symm_apply, RCLike.realRingEquiv_symm_apply, Ring.DirectLimit.congr_symm_apply_of, BoolRing.Iso.mk_inv_hom', RingCon.comapQuotientEquivOfSurj_symm_mk, piCongrLeft'_symm, ofHomInv_symm_apply, Subsemiring.centerCongr_symm_apply_coe, MonoidAlgebra.opRingEquiv_symm_apply, NumberField.RingOfIntegers.withValEquiv_symm_apply, RingHom.quotientKerEquivOfSurjective_symm_comp, ModuleCat.endRingEquiv_symm_apply_hom, frobeniusEquiv_symm_comp_frobenius, IsLocalization.isLocalization_iff_of_base_ringEquiv, MonoidHom.map_frobeniusEquiv_symm, AddMonoidAlgebra.opRingEquiv_symm_single, AdjoinRoot.symm_mapRingEquiv, RingCon.comapQuotientEquivOfSurj_symm_mk', ofLeftInverseS_symm_apply, AddMonoidAlgebra.opRingEquiv_symm_apply, NonUnitalSubsemiring.centerToMulOpposite_symm_apply_coe, quotientBot_symm_mk, Ideal.comap_of_equiv, Polynomial.mapEquiv_symm_apply, FractionalIdeal.mapEquiv_symm, symm_toRingHom_comp_toRingHom, asBoolRingAsBoolAlg_symm_apply, HahnSeries.toMvPowerSeries_symm_apply_coeff, PreTilt.coeff_frobeniusEquiv_symm, DividedPowers.ofRingEquiv_dpow, DividedPowers.equiv_apply, RingCon.comapQuotientEquivRangeS_symm_mk, moduleEndSelf_symm_apply, Matrix.transposeRingEquiv_symm_apply, NonUnitalSubring.topEquiv_symm_apply_coe, FractionalIdeal.canonicalEquiv_symm, Polynomial.roots_X_pow_char_pow_sub_C_pow, WithVal.apply_symm_equiv, IsLocalization.ringEquivOfRingEquiv_symm_apply, symm_apply_apply, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_symm_apply_mk, normalizedFactorsEquivOfQuotEquiv_symm, Matrix.piRingEquiv_symm_apply, WithAbs.tendsto_one_div_one_add_pow_nhds_one, symm_apply_eq, piEquivPiSubtypeProd_symm_apply, MonoidAlgebra.symm_mapRangeRingEquiv, Algebra.norm_eq_of_equiv_equiv, prodZeroRing_symm_apply, Subring.comap_equiv_eq_map_symm, zeroRingProd_symm_apply, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, IsFractionRing.isFractionRing_iff_of_base_ringEquiv, StarAlgEquiv.toRingEquiv_symm, WittVector.IsocrystalEquiv.frob_equivariant, Ideal.quotientEquiv_symm_mk, toCommRingCatIso_inv, WithVal.equivWithVal_symm, mapTwoSidedIdeal_symm, symm_toRingHom_apply_toRingHom_apply, Subring.centerToMulOpposite_symm_apply_coe, Subsemiring.mem_map_equiv, MonoidAlgebra.symm_commRingEquiv, MvPolynomial.isEmptyRingEquiv_symm_apply, Subring.mopRingEquivOp_symm_apply, NonUnitalSubsemiring.map_equiv_eq_comap_symm, Subsemiring.centerToMulOpposite_symm_apply_coe, TruncatedWittVector.commutes_symm', invFun_eq_symm, IsPerfectClosure.equiv_symm, MonoidAlgebra.opRingEquiv_symm_single, PreTilt.coeff_iterate_frobeniusEquiv_symm, Subring.mem_map_equiv, Ideal.symm_apply_mem_of_equiv_iff, Matrix.compRingEquiv_symm_apply, ZMod.ringEquivCongr_symm, StarAlgEquiv.symm_to_ringEquiv, NonUnitalSubring.centerCongr_symm_apply_coe, MonoidAlgebra.curryRingEquiv_symm_single, ofRingHom_symm_apply, Int.quotientSpanEquivZMod_comp_castRingHom, LocallyConstant.congrLeftRingEquiv_symm_apply_apply, frobeniusEquiv_symm_pow, subsemiringMap_symm_apply_coe, mapTwoSidedIdeal_apply, WittVector.dvd_sub_sum_teichmuller_iterateFrobeniusEquiv_coeff, frobenius_comp_frobeniusEquiv_symm, iterateFrobeniusEquiv_symm, Subring.topEquiv_symm_apply_coe, IsAlgClosure.equivOfEquiv_symm_algebraMap, symm_trans_self, DoubleQuot.coe_quotQuotEquivQuotSupₐ_symm, comp_ofBijective_symm, Polynomial.roots_X_pow_char_sub_C_pow, WittVector.inv_pairβ‚‚, MulSemiringAction.toRingEquiv_symm_apply, coe_frobenius_comp_coe_frobeniusEquiv_symm, sumArrowEquivProdArrow_symm_apply, symm_bijective, RingHom.quotientKerEquivOfRightInverse.Symm.apply, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, symm_toNonUnitalRingHom_comp_toNonUnitalRingHom, WittVector.inv_pair₁, Matrix.conjTransposeRingEquiv_symm_apply, PrimeSpectrum.comapEquiv_apply, cast_symm_apply, idealFactorsEquivOfQuotEquiv_symm, IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply, piUnique_symm_apply, Ideal.pointwise_smul_eq_comap, RingHom.map_iterate_frobeniusEquiv_symm, Polynomial.opRingEquiv_symm_C_mul_X_pow, Polynomial.opRingEquiv_symm_monomial, IsLocalization.algEquivOfAlgEquiv_symm_apply, Submodule.linearDisjoint_op, NonUnitalSubring.comap_equiv_eq_map_symm, PerfectRing.lift_apply, PerfectionMap.comp_symm_equiv, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, RCLike.complexRingEquiv_symm_apply, ofLeftInverse'_symm_apply, WithAbs.equivWithAbs_equiv_symm_apply, IsLocalization.isLocalization_of_base_ringEquiv, Subring.map_equiv_eq_comap_symm, NonUnitalSubsemiring.comap_equiv_eq_map_symm, HahnSeries.coeff_toPowerSeries_symm, MvPolynomial.isEmptyRingEquiv_symm_toRingHom, WithAbs.equiv_equivWithAbs_symm_apply, IsPerfectClosure.equiv_apply, Matrix.uniqueRingEquiv_symm_apply, IsAlgClosure.equivOfEquiv_symm_comp_algebraMap, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, iterate_frobeniusEquiv_symm_pow_p_pow, symm_ofNonUnitalRingHom, toSemilinearEquiv_symm_apply, NonUnitalSubring.centerToMulOpposite_symm_apply_coe, Ideal.map_of_equiv, prodProdProdComm_symm, RingAut.inv_apply, op_symm_apply_symm_apply, nonUnitalSubsemiringMap_symm_apply_coe, AddMonoidAlgebra.curryRingEquiv_symm_single, image_eq_preimage, WittVector.StandardOneDimIsocrystal.frobenius_apply, PrimeSpectrum.comapEquiv_symm, Subring.centerCongr_symm_apply_coe, polynomial_expand_eq, coe_toEquiv_symm, NonUnitalSubring.mem_map_equiv, Subring.ringEquivOpMop_symm_apply_coe, HahnSeries.coeff_toMvPowerSeries_symm, MonoidAlgebra.uniqueRingEquiv_symm_apply, Ideal.map_comap_of_equiv, symm_trans_apply, Ideal.map_symm, mk_coe', LocallyConstant.congrRightRingEquiv_symm_apply_apply, AddMonoidAlgebra.uniqueRingEquiv_symm_apply, Subsemiring.ringEquivOpMop_symm_apply_coe, ofNonUnitalRingHom_symm_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, ofRingHom_symm, Ring.DirectLimit.ringEquiv_symm_mk, symm_trans, frobeniusEquiv_symm_pow_p, AddMonoidAlgebra.symm_mapDomainRingEquiv, frobenius_apply_frobeniusEquiv_symm, IsFractionRing.ringEquivOfRingEquiv_symm, trace_quotient_eq_trace_localization_quotient, Perfection.coeff_frobeniusEquiv_symm, Rep.Action_ρ_eq_ρ, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, LinearEquiv.conjRingEquiv_symm_apply_apply, piCongrLeft'_symm_apply, toSemilinearEquiv_apply, Perfection.lift_apply_apply_coe, WithAbs.equivWithAbs_symm, RingHomInvPair.of_ringEquiv, PreTilt.untilt_iterate_frobeniusEquiv_symm_pow, PerfectionMap.surjective, Ideal.quotEquivOfEq_symm, Subsemiring.topEquiv_symm_apply_coe, symm_symm, image_eq_preimage_symm, WithVal.equivWithVal_apply, AlgEquiv.ofRingEquiv_toEquiv, IsLocalization.ringEquivOfRingEquiv_symm, Padic.coe_withValRingEquiv_symm, sofLeftInverse'_symm_apply, Polynomial.roots_X_pow_char_sub_C, toNonUnitalRingHom_apply_symm_toNonUnitalRingHom_apply, AdjoinRoot.quotEquivQuotMap_symm_apply, toRingHom_apply_symm_toRingHom_apply, IsPerfectClosure.equiv_symm_apply, StarAlgEquiv.to_ringEquiv_symm, FDRep.of_ρ, Rat.ringOfIntegersEquiv_symm_apply_coe, Polynomial.opRingEquiv_symm_C, piFinTwo_symm_apply, Module.Basis.mapCoeffs_repr, symm_comp, HahnSeries.ofPowerSeries_apply, Polynomial.roots_expand_pow, Subsemiring.map_equiv_eq_comap_symm, coe_ringEquiv_lpBCF_symm, Polynomial.toFinsuppIso_symm_apply, symm_toNonUnitalRingHom_apply_toNonUnitalRingHom_apply, PerfectionMap.comp_symm_equiv', Language.reverseIso_symm_apply, MonoidAlgebra.symm_mapDomainRingEquiv, Submodule.equivOpposite_symm_apply, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mk, coe_toAddEquiv_symm, Perfection.coeff_iterate_frobeniusEquiv_symm, Subsemiring.comap_equiv_eq_map_symm, DoubleQuot.quotQuotEquivQuotSup_symm_quotQuotMk, Submodule.mulMap_op, eq_symm_apply, addMonoidEndRingEquivInt_symm_apply, addMonoidAlgebraRingEquivDirectSum_symm_apply, image_symm_eq_preimage, coe_toMulEquiv_symm, AddMonoidAlgebra.symm_mapRangeRingEquiv, RingCon.quotientQuotientEquivQuotient_symm_mk, toRingHom_comp_symm_toRingHom, IsLocalization.AtPrime.equivQuotMaximalIdeal_symm_apply_mk, AlgEquiv.symm_toRingEquiv, RatFunc.toFractionRingRingEquiv_symm_eq, DoubleQuot.quotQuotEquivQuotOfLE_symm_mk, opOp_symm_apply, WithVal.valuation_equiv_symm, Subsemiring.mopRingEquivOp_symm_apply, piCongrRight_symm, Module.compHom.toLinearEquiv_symm_apply, PerfectRing.liftAux_apply, AddMonoidAlgebra.symm_commRingEquiv, Rep.ihom_obj_ρ, Algebra.trace_eq_of_equiv_equiv, MonoidHom.map_iterate_frobeniusEquiv_symm, ofHomInv'_symm_apply, Module.End.ringEquivEndFinsupp_symm_apply_apply, piOptionEquivProd_symm_apply, Equiv.ringEquiv_symm_apply, PerfectionMap.lift_apply, DoubleQuot.quotQuotEquivQuotSupₐ_symm_toRingEquiv, HahnSeries.toPowerSeries_symm_apply_coeff, AlgebraicGeometry.Proj.stalkIso'_symm_mk, WithVal.equivWithVal_symm_apply, toNonUnitalRingHomm_comp_symm_toNonUnitalRingHom, AlgEquiv.toRingEquiv_symm, ofBijective_symm_comp, NumberField.RingOfIntegers.mapRingEquiv_symm_apply, IsPerfectClosure.equiv_symm_toRingHom, AlgEquiv.ofRingEquiv_symm_apply, Real.ringEquivCauchy_symm_apply_cauchy, symm_refl, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, Int.quotientSpanNatEquivZMod_comp_castRingHom, self_trans_symm, Polynomial.opRingEquiv_symm_X, RingHom.map_frobeniusEquiv_symm, WithAbs.equivWithAbs_symm_equiv_symm_apply, toSemiRingCatIso_inv, TruncatedWittVector.commutes_symm, mapMatrix_symm, frobeniusEquiv_symm_apply_frobenius, Polynomial.roots_X_pow_char_pow_sub_C, prodCongr_symm_apply, DoubleQuot.quotQuotEquivComm_symm, NonUnitalSubsemiring.topEquiv_symm_apply_coe, moduleEndSelfOp_symm_apply, IsLocalRing.ResidueField.mapEquiv.symm, Valuation.IsEquiv.orderRingIso_symm_apply, comp_symm, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply

RingHomInvPair

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”RingHomInvPairβ€”comp_eqβ‚‚
comp_eq

RootPairing.Equiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: toEndUnit_inv, inv_indexEquiv, inv_coweightMap, inv_weightMap

RootPairing.InvariantForm

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”LinearMap.IsSymm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
form
β€”β€”

RootPairing.IsOrthogonal

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”RootPairing.IsOrthogonalβ€”β€”β€”

RootPairing.RootPositiveForm

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”LinearMap.IsSymm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
form
β€”β€”

SModEq

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SModEqβ€”β€”β€”

SMulCommClass

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”SMulCommClassβ€”smul_comm

SSet.Truncated.HomotopicL

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”SSet.Truncated.HomotopicLβ€”SSet.Truncated.Quasicategoryβ‚‚.fill31

SSet.Truncated.HomotopicR

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”SSet.Truncated.HomotopicRβ€”SSet.Truncated.Quasicategoryβ‚‚.fill32

SameRay

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SameRayβ€”β€”β€”

Sbtw

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Sbtwβ€”β€”sbtw_comm

SeparatedNhds

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SeparatedNhdsβ€”β€”Disjoint.symm

Set.BijOn

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Set.InvOn
Set.BijOn
β€”β€”Set.RightInvOn.mapsTo
surjOn
Set.LeftInvOn.injOn
Set.RightInvOn.surjOn
mapsTo

Set.EqOn

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Set.EqOnβ€”β€”β€”

Set.InvOn

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Set.InvOnβ€”β€”β€”

SetRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SetRel
Set.instMembership
β€”β€”symm_of

SetTheory.PGame.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SetTheory.PGame
SetTheory.PGame.setoid
β€”β€”symm
IsEquiv.toSymm
Quotient.instIsEquivEquiv

SetTheory.PGame.Identical

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SetTheory.PGame.Identicalβ€”β€”Relator.BiTotal.symm

SetTheory.PGame.Relabelling

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

Similar

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Similarβ€”β€”inv_ne_zero
ENNReal.coe_inv
ENNReal.div_eq_inv_mul
ENNReal.eq_div_iff
Nat.cast_zero
ENNReal.coe_ne_top

SimpleGraph

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Symmetric
Adj
β€”β€”

SimpleGraph.Adj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.Adjβ€”β€”SimpleGraph.symm

SimpleGraph.Dart

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
10 mathmath: edge_fiber, SimpleGraph.Walk.mem_darts_reverse, symm_involutive, SimpleGraph.dart_edge_eq_iff, edge_symm, SimpleGraph.Walk.darts_reverse, edge_comp_symm, symm_toProd, symm_symm, symm_mk

SimpleGraph.IsBipartiteWith

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.IsBipartiteWithβ€”β€”Disjoint.symm
disjoint
mem_of_adj
SimpleGraph.Adj.symm

SimpleGraph.IsCompleteBetween

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.IsCompleteBetweenβ€”β€”SimpleGraph.isCompleteBetween_comm

SimpleGraph.IsEdgeReachable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.IsEdgeReachableβ€”β€”SimpleGraph.Reachable.symm

SimpleGraph.IsFiveWheelLike

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.IsFiveWheelLikeβ€”β€”SimpleGraph.IsPathGraph3Compl.symm
Finset.inter_comm

SimpleGraph.IsPathGraph3Compl

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.IsPathGraph3Complβ€”β€”SimpleGraph.Adj.symm

SimpleGraph.IsUniform

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Symmetric
Finset
SimpleGraph.IsUniform
β€”SimpleGraph.edgeDensity_comm

SimpleGraph.Iso

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
12 mathmath: SimpleGraph.UnitDistEmbedding.iso_p_apply, connectedComponentEquiv_symm_apply, symm_apply_reachable, map_symm_apply, SimpleGraph.ConnectedComponent.iso_inv_image_comp_eq_iff_eq_map, symm_toHom_comp_toHom, mapNeighborSet_symm_apply_coe, toHom_comp_symm_toHom, SimpleGraph.hasseDualIso_symm_apply, connectedComponentEquiv_symm, mapEdgeSet_symm_apply, comap_symm_apply

SimpleGraph.Reachable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”SimpleGraph.Reachableβ€”elim

SimpleGraph.Subgraph

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Symmetric
Adj
β€”β€”

SimpleGraph.Subgraph.Adj

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”SimpleGraph.Subgraph.Adjβ€”β€”SimpleGraph.Subgraph.symm

Specializes

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Specializesβ€”β€”R0Space.specializes_symmetric

StarAlgEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
33 mathmath: ofInjective_symm_apply, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, ofStarAlgHom_symm_apply, Unitary.conjStarAlgAut_symm, toStarRingEquiv_symm, restrictScalars_symm_apply, toAlgEquiv_symm, gelfandStarTransform_symm_apply, rightInverse_symm, toRingEquiv_symm, aut_inv, leftInverse_symm, LinearMap.toMatrixOrthonormal_symm_apply, symm_to_ringEquiv, apply_symm_apply, symm_bijective, Unitary.conjStarAlgAut_symm_apply, coe_symm_toAlgEquiv, symm_apply_apply, CStarMatrix.reindexₐ_symm, LinearIsometryEquiv.symm_conjStarAlgEquiv_apply_apply, symm_trans_apply, symm_symm, LinearIsometryEquiv.symm_conjStarAlgEquiv, to_ringEquiv_symm, symm_mk, refl_symm, Homeomorph.compStarAlgEquiv'_symm_apply, ofLeftInverse'_symm_apply, ofAlgEquiv_symm, Unitization.inrRangeEquiv_symm_apply, invFun_eq_symm, Matrix.kroneckerStarAlgEquiv_symm_apply

StarMulEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
15 mathmath: symm_apply_apply, Unitary.mapEquiv_symm_apply, ofStarMonoidHom_symm_apply, toMulEquiv_symm, symm_symm, apply_symm_apply, leftInverse_symm, symm_bijective, unitary.mapEquiv_symm, symm_trans_apply, Unitary.mapEquiv_symm, rightInverse_symm, refl_symm, ofClass_symm_apply, invFun_eq_symm

StarRingEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
13 mathmath: symm_symm, CentroidHom.starCenterIsoCentroid_symm_apply_coe, StarAlgEquiv.toStarRingEquiv_symm, leftInverse_symm, rightInverse_symm, symm_apply_apply, apply_symm_apply, symm_mk, invFun_eq_symm, symm_trans_apply, symm_bijective, refl_symm, ofStarRingHom_symm_apply

Stream'.WSeq.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Stream'.WSeq.Equivβ€”β€”Stream'.WSeq.LiftRel.symm

Stream'.WSeq.LiftRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalSymmetricStream'.WSeq
Stream'.WSeq.LiftRel
β€”Symmetric.swap_eq
swap

StrongFEPair

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
2 mathmath: functional_equation, symm_Ξ›_eq

Structomorph

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

StructureGroupoid

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
OpenPartialHomeomorph.symmβ€”symm'

Subalgebra.LinearDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Subalgebra.LinearDisjoint
CommSemiring.toSemiring
β€”β€”symm_of_commute
mul_comm

Subgroup.Commensurable

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Subgroup.Commensurableβ€”β€”β€”

Subgroup.IsComplement'

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Subgroup.IsComplement'β€”β€”inv_inv
mul_inv_rev
Subgroup.isComplement'_def
Subgroup.isComplement_iff_bijective
Equiv.bijective_comp
Equiv.comp_bijective

Submodule.IsOrtho

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Submodule.IsOrthoβ€”β€”LE.le.trans
Submodule.le_orthogonal_orthogonal
Submodule.orthogonal_le

Submodule.LinearDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Submodule.LinearDisjoint
CommSemiring.toSemiring
β€”β€”symm_of_commute
mul_comm

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”instHasEquiv_mathlibβ€”β€”β€”

Sym2.Rel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Sym2.Relβ€”β€”β€”

TotalComplexShape

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

TotalComplexShapeSymmetry

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”ComplexShape.Ο€β€”β€”

Trivialization

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
19 mathmath: inCoordinates_apply_eqβ‚‚, VectorBundleCore.localTriv_symm_apply, prod_symm_apply, Bundle.Trivial.trivialization_symm_apply, symm_apply, pullback_symm_apply_snd, prod_symm_apply_snd, coe_symmβ‚—, mk_coordChangeL, symm_apply_of_notMem, symm_apply_apply_mk, continuousLinearEquivAt_symm_apply, coordChangeL_apply, mk_symm, apply_mk_symm, symmL_apply, symm_proj_apply, continuousOn_symm, linearEquivAt_symm_apply

Turing.BlankRel

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Turing.BlankRelβ€”β€”β€”

TuringEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”TuringEquivalentβ€”β€”equivalence

ULiftable

Definitions

NameCategoryTheorems
symm πŸ“–CompOpβ€”

UniformEquiv

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
25 mathmath: self_comp_symm, continuous_symm, uniformContinuous_symm, prodCongr_symm, piCongrLeft_symm_apply, apply_symm_apply, coe_symm_toEquiv, symm_comp_self, image_symm, finTwoArrow_symm_apply, refl_symm, AbstractCompletion.mapEquiv_symm, funUnique_symm_apply, preimage_symm, Metric.Snowflaking.uniformEquiv_symm_apply, symm_apply_apply, UniformSpace.Completion.mapEquiv_symm, CompareReals.compare_uc_symm, uniformEquiv_mk_coe_symm, toHomeomorph_symm_apply, piCongrRight_symm, subtype_symm_apply_coe, piFinTwo_symm_apply, prodComm_symm, AbstractCompletion.uniformContinuous_compareEquiv_symm

UniformSpace

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Filter.Tendsto
uniformity
β€”β€”

UniformSpace.Core

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”Filter.Tendsto
uniformity
β€”β€”

VAddCommClass

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalβ€”VAddCommClassβ€”vadd_comm

Valuation.IsEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Valuation.IsEquivβ€”β€”β€”

ValuativeRel.veq

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”ValuativeRel.veqβ€”β€”ValuativeRel.veq_comm

Wbtw

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”Wbtwβ€”β€”wbtw_comm

WeakFEPair

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
4 mathmath: symm_Ξ›β‚€_eq, HurwitzZeta.hurwitzEvenFEPair_zero_symm, functional_equationβ‚€, functional_equation

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–β€”β€”β€”β€”β€”

qrSign

Theorems

NameKindAssumesProvesValidatesDepends On
symm πŸ“–mathematicalOdd
Nat.instSemiring
qrSignβ€”neg_one_pow
mul_comm

unitInterval

Definitions

NameCategoryTheorems
symm πŸ“–CompOp
42 mathmath: symmHomeomorph_apply, strictAnti_symm, coe_symmMeasurableEquiv, symm_le_symm, symmMeasurableEquiv_apply, ProbabilityTheory.setBernoulli_singleton, measurePreserving_symm, symm_projIcc, ProbabilityTheory.setBernoulli_apply', lt_symm_comm, Path.Homotopy.symm_apply, measurable_symm, ContinuousMap.Homotopy.symm_apply, symm_one, coe_symm_eq, symmMeasurableEquiv_symm_apply, sigmoid_neg, symm_inj, symmHomeomorph_symm_apply, Path.symm_apply, symm_le_comm, ContinuousMap.HomotopyRel.symm_apply, symm_eq_zero, Set.Icc.convexCombo_symm, image_coe_preimage_symm, MeasureTheory.instIsProbabilityMeasureHAddMeasureHSMulNNRealToNNRealSymm, symm_zero, symm_lt_comm, symm_symm, ContinuousMap.HomotopyWith.symm_apply, toNNReal_symm_add_toNNReal, symm_lt_symm, half_le_symm_iff, symm_involutive, Path.Homotopy.symmβ‚‚_apply, symm_eq_one, ProbabilityTheory.setBernoulli_apply, symm_bijective, le_symm_comm, toNNReal_add_toNNReal_symm, continuous_symm, ProbabilityTheory.setBernoulli_eq_map

---

← Back to Index