Documentation Verification Report

lift

πŸ“ Source: MathlibTest/lift.lean

Statistics

MetricCount
Definitionslift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift
243
Theoremslift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift, lift
20
Total263

Abelianization

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: lift_unique, coe_lift_symm, lift_apply_of, lift_of_comp, lift_of, FreeAbelianGroup.liftAddEquiv_apply_apply, lift_symm_apply, equivOfComm_symm_apply

AddCommGroup.DirectLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_of', lift_comp_of, lift_of, lift_injective

AddCommGrpCat.HasLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: productLimitCone_isLimit_lift, lift_hom_apply

AddCommGrpCat.image

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_fac

AddCon

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: lift_comp_mk', lift_mk', lift_range, lift_surjective_of_surjective, map_apply, lift_apply_mk', lift_unique, lift_coe

AddMagma.FreeAddSemigroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_symm_apply, lift_comp_of, lift_comp_of', lift_of

AddMonoid.Coprod

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
13 mathmath: lift_comp_inr, lift_inr_inl, mrange_lift, lift_comp_inl, lift_apply_inl, lift_apply_inr, comp_lift, lift_inl_inr, lift_comp_swap, range_lift, lift_apply_mk, lift_swap, lift_unique

AddMonoidAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: lift_apply', lift_mapRangeRingHom_algebraMap, lift_apply, lift_single, lift_symm_apply, lift_of, lift_unique', lift_of', lift_def

AddSubmonoid.LocalizationMap

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
22 mathmath: addEquivOfLocalizations_symm_apply, lift_surjective_iff, lift_injective_iff, lift_eq_iff, lift_of_comp, lift_mk'_spec, lift_apply, lift_eq, lift_spec_add, AddLocalization.addEquivOfQuotient_apply, lift_comp, lift_comp_lift, lift_comp_lift_eq, lift_spec, lift_id, lift_add_right, lift_localizationMap_mk', lift_mk', lift_unique, lift_left_inverse, lift_add_left, addEquivOfLocalizations_apply

AddSubmonoid.LocalizationMap.AwayMap

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp, lift_eq

AdicCompletion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: IsAdicComplete.of_lift, IsAdicComplete.of_comp_lift, IsAdicComplete.StrictMono.of_comp_lift, IsAdicComplete.StrictMono.of_lift, eval_lift_apply, eval_lift

AdjoinRoot

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: coe_liftHom, lift_comp_of, lift_mk, toRingHom_liftAlgHom, coe_liftAlgHom, lift_of, lift_root

Algebra.FormallySmooth

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: comp_lift, mk_lift

Algebra.GrothendieckAddGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_apply, lift_symm_apply

Algebra.GrothendieckGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_symm_apply, lift_apply

Algebra.TensorProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
17 mathmath: lift_comp_includeLeft, MvPolynomial.universalFactorizationMap_comp_map, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, Ideal.Fiber.lift_residueField_surjective, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, CommAlgCat.lift_unop_hom, lmul'_comp_map, lift_comp_includeRight, liftEquiv_apply, Algebra.pushoutDesc_apply, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, CommRingCat.coproductCoconeIsColimit_desc, lift_tmul, lift_comp_includeRight', AlgebraicGeometry.Proj.lift_awayMapₐ_awayMapₐ_surjective, lift_includeLeft_includeRight

AlgebraicGeometry.IsClosedImmersion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_fac_assoc, lift_fac, isIso_lift

AlgebraicGeometry.IsOpenImmersion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: instLift, comp_lift_assoc, isPullback_lift_id, AlgebraicGeometry.Scheme.Cover.LocallyDirected.ofIsBasisOpensRange_trans, lift_fac_assoc, lift_uniq, comp_lift, lift_fac, lift_app

AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_fac, lift_fac_assoc, lift_range, lift_uniq

AlgebraicGeometry.PresheafedSpace.IsOpenImmersion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: isoOfRangeEq_hom, lift_fac_assoc, isoOfRangeEq_inv, lift_fac, lift_uniq

ArchimedeanClass

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_mk

Booleanisation

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
19 mathmath: comp_sdiff_comp, not_comp_lt_lift, lift_sup_comp, lift_sdiff_lift, lift_le_lift, lift_inf_comp, compl_comp, compl_lift, lift_sdiff_comp, not_comp_le_lift, lift_lt_lift, comp_sdiff_lift, lift_lt_comp, comp_sup_lift, lift_inf_lift, comp_inf_lift, lift_sup_lift, lift_le_comp, lift_bot

BoundedOrder

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Bundle.Pullback

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: Trivialization.pullback_source, lift_mk, Pullback.continuous_lift, pullbackTopology_def, Trivialization.pullback_apply, lift_snd, lift_proj

Cardinal

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
318 mathmath: mk_le_of_module, Ordinal.lift_card_iSup_le_sum_card, ofENat_le_lift, Algebra.lift_cardinalMk_adjoin_le, lift_ofENat, lift_le_ofENat, SymmetricAlgebra.rank_eq, Ordinal.cof_iSup_le_lift, Module.lift_rank_of_isLocalizedModule_of_free, Field.lift_insepDegree_mul_lift_insepDegree_of_isAlgebraic, Module.Basis.mk_eq_rank, ofENat_lt_lift, lift_mk_le, lift_univ, ofENat_eq_lift, lift_rank_mul_lift_rank, Algebraic.cardinalMk_lift_le_mul, LinearIndependent.cardinal_lift_le_rank, Matrix.lift_cRank_submatrix_le, lift_rank_map_le, mk_preimage_of_subset_range_lift, Module.Basis.mk_eq_rank', IsAlgClosed.cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt, mk_preimage_equiv_lift, IsLocalization.lift_cardinalMk, IntermediateField.lift_insepDegree_bot', rank_finsupp, ofNat_le_lift_iff, lift_le_aleph0, rank_finsupp_self, mk_eq_mk_of_basis, LinearMap.lift_rank_le_of_surjective, lift_eq_aleph_one, Module.Basis.dual_rank_eq, Matroid.cRk_comap_lift, lift_zero, LinearMap.le_rank_iff_exists_linearIndependent, Module.rank_baseChange, LinearMap.lift_rank_comp_le_right, mk_finsupp_lift_of_infinite, ofNat_lt_lift_iff, Subfield.lift_relrank_comap_comap_eq_lift_relrank_of_surjective, lift_rank_range_of_injective, Matrix.lift_cRank_submatrix, lift_lift, lift_lt_ofNat_iff, AddMonoidAlgebra.cardinalMk_lift_of_fintype, lift_iInf, rank_matrix_module, Equiv.lift_cardinal_eq, lift_succ, lift_prod, mk_subset_ge_of_subset_image_lift, Computability.Encoding.card_le_card_list, prod_const, Ordinal.card_sInf_range_compl_le_lift, mk_preimage_down, Subfield.lift_relrank_map_map, Ordinal.cof_lsub_le_lift, FirstOrder.Language.card_eq_card_functions_add_card_relations, liftInitialSeg_toFun, LinearEquiv.lift_rank_eq, mk_iUnion_le_sum_mk_lift, mk_image_embedding_lift, Ordinal.cof_blsub_le_lift, lift_monotone, lift_iSup, lift_trdeg_le_of_injective, lift_sSup, lift_rank_le_of_surjective_injective, mk_biUnion_le_lift, mk_range_eq_of_injective, toENat_lift, MonoidAlgebra.cardinalMk_lift_of_infinite, lift_mk_shrink', continuum_lt_lift, WType.cardinalMk_le_max_aleph0_of_finite', lift_le_nat_iff, lift_lt_ofENat, mk_image_eq_of_injOn_lift, aleph1_le_lift, lt_univ, Module.rank_linearMap, WType.cardinalMk_eq_sum_lift, FreeAlgebra.cardinalMk_eq_lift, Module.lift_rank_bot_le_lift_rank_of_isScalarTower, mk_embedding_eq_zero_iff_lift_lt, lift_power_sum, mk_image_eq_lift, FirstOrder.Language.Substructure.lift_card_closure_le_card_term, TensorAlgebra.rank_eq, lift_id', lift_sum, lift_ord, lift_rank_lt_rank_dual', IsTranscendenceBasis.lift_cardinalMk_eq_trdeg, Subfield.lift_relrank_comap_comap_eq_lift_relrank_of_le, lift_cardinalMk_eq_lift_cardinalMk_field_pow_lift_rank, lift_lt_univ', lift_rank_add_lift_rank_le_rank_prod, lift_preBeth, Matrix.cRank_diagonal, lift_rank_eq_of_equiv_equiv, LinearMap.lift_rank_le_of_injective, Ordinal.card_iSup_Iio_le_card_mul_iSup, mk_iUnion_eq_sum_mk_lift, IsLocalizedModule.lift_rank_eq, LinearMap.lift_rank_eq_of_surjective, AddMonoidAlgebra.cardinalMk_lift_of_infinite, IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, lift_mk_shrink'', lift_mk_fin, zero_eq_lift_iff, lift_le_ofNat_iff, lift_trdeg_le_of_surjective, lift_eq_aleph0, Field.lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic, lift_umax_eq, rank_tensorProduct, nat_eq_lift_iff, lift_mk_shrink, aleph1_lt_lift, IntermediateField.lift_relrank_comap, AddOreLocalization.cardinalMk_le_lift_cardinalMk_of_addCommute, rank_ulift, Algebra.IsAlgebraic.lift_cardinalMk_le_max, iSupIndep.subtype_ne_bot_le_rank, Algebra.lift_rank_eq_of_equiv_equiv, lift_mk_eq', lift_mk_eq, lift_iSup_le_sum, Complex.rank_real_complex', ZFSet.lift_card_iUnion_le_sum_card, lift_eq_aleph1, sum_le_lift_mk_mul_iSup, toNat_lift, mk_uLift, ZFSet.lift_card_range_le, lift_lt, mk_range_inr, Algebra.IsAlgebraic.lift_cardinalMk_le_sigma_polynomial, lift_rank_lt_rank_dual, aleph0_le_lift, le_lift_iff, Ordinal.lift_cof, OreLocalization.cardinalMk_le_max, OreLocalization.cardinalMk_le_lift_cardinalMk_of_commute, lift_eq_ofNat_iff, Matrix.cRank_one, Matrix.lift_cRank_reindex, Field.lift_rank_mul_lift_insepDegree_of_isPurelyInseparable, IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_right, nat_lt_lift_iff, mk_congr_lift, IntermediateField.lift_sepDegree_bot', FreeAlgebra.rank_eq, Algebra.lift_rank_le_of_injective_injective, Ordinal.mk_Iio_ordinal, lift_two, lift_lt_univ, mk_arrow, lt_lift_iff, rank_matrix_module', lift_umax, lift_inj, aleph_one_le_lift, IsTranscendenceBasis.lift_cardinalMk_eq, lift_natCast, sum_le_iSup_lift, Subfield.lift_relrank_comap, mk_range_eq_lift, mk_iUnion_le_lift, FirstOrder.Language.empty.nonempty_equiv_iff, lift_le_one_iff, lift_le_aleph1, AddMonoidAlgebra.cardinalMk_lift_of_infinite', mk_range_inl, FirstOrder.Language.Theory.exists_large_model_of_infinite_model, LinearMap.lift_rank_range_add_rank_ker, rank_matrix', RelIso.cof_eq_lift, Module.dual_rank_eq, MonoidAlgebra.cardinalMk_lift_of_fintype, mk_finsupp_lift_of_fintype, lift_uzero, IsRegular.lift, lift_aleph, LinearEquiv.nonempty_equiv_iff_lift_rank_eq, IsBaseChange.lift_rank_eq, continuum_le_lift, small_iff_lift_mk_lt_univ, prod_eq_of_fintype, rank_matrix, lift_two_power, sum_le_lift_mk_mul_iSup_lift, IsAlgClosed.cardinal_le_max_transcendence_basis, lift_trdeg_add_eq, IsLocalization.lift_cardinalMk_le, IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left, Ordinal.lift_card_sInf_compl_le, Matroid.cRk_map_image_lift, one_lt_lift_iff, Algebra.IsAlgebraic.lift_rank_of_isFractionRing, lift_mk_le_lift_mk_of_injective, lift_ofNat, lift_le_sum, lift_le_aleph_one, cardinalMk_algHom_le_rank, mk_preimage_of_injective_of_subset_range_lift, lift_mk_le', lift_sInf, one_eq_lift_iff, MvPolynomial.cardinalMk_le_max_lift, IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic, IntermediateField.lift_relrank_comap_comap_eq_lift_relrank_of_le, mk_sum, lift_mul, FreeAlgebra.cardinalMk_le_max_lift, aleph1_eq_lift, IntermediateField.lift_cardinalMk_adjoin_le, aleph0_lt_lift, lift_lt_aleph0, aleph0_eq_lift, Subfield.lift_rank_comap, MonoidAlgebra.cardinalMk_lift_of_infinite', out_lift_equiv, lift_beth, FirstOrder.Language.card_withConstants, IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, lift_aleph0, IsFractionRing.lift_cardinalMk, lift_one, IntermediateField.lift_relrank_comap_comap_eq_lift_relrank_inf, Field.lift_sepDegree_eq_of_equiv, ZFSet.cardinalMk_coe_sort, ofNat_eq_lift_iff, Field.lift_rank_mul_lift_sepDegree_of_isSeparable, Field.lift_insepDegree_eq_of_equiv, infinite_basis_le_maximal_linearIndependent', Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, AlgebraicIndependent.lift_cardinalMk_le_trdeg, lift_mk_le_lift_mk_of_surjective, aleph_one_eq_lift, AlgEquiv.lift_trdeg_eq, mk_surjective_eq_zero_iff_lift, one_le_lift_iff, FirstOrder.Language.card_functions_sum, lift_lt_continuum, lift_iSup_le_iff, IntermediateField.lift_relrank_comap_comap_eq_lift_relrank_of_surjective, lift_rank_range_le, lift_trdeg_add_le, FirstOrder.Language.card_sum, lift_le_continuum, mk_image_le_lift, LinearEquiv.lift_rank_map_eq, lift_rank_le_of_injective_injective, Ordinal.cof_bsup_le_lift, MvPolynomial.cardinalMk_eq_lift, nat_le_lift_iff, toNat_lift_add_lift, lift_lt_aleph1, lift_rank_le_of_injective_injectiveβ‚›, rank_fun_eq_lift_mul, IsTranscendenceBasis.lift_cardinalMk_eq_max_lift, IsTranscendenceBasis.lift_rank_eq_max_lift, lift_eq_ofENat, MvRatFunc.rank_eq_max_lift, lift_strictMono, IntermediateField.lift_rank_comap, lift_add, IntermediateField.lift_relrank_map_map, Ordinal.lift_card, lift_power, aleph_one_lt_lift, IntermediateField.LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, lift_eq_nat_iff, mk_preimage_of_injective_lift, Subfield.lift_relrank_comap_comap_eq_lift_relrank_inf, MvPolynomial.trdeg_of_isDomain, lt_univ', mk_finsupp_lift_of_infinite', lift_eq_zero, Algebra.lift_rank_le_of_surjective_injective, rank_prod, isRegular_lift_iff, zero_lt_lift_iff, lift_eq_one, Algebraic.cardinalMk_lift_of_infinite, sum_const, AddOreLocalization.cardinalMk_le_max, Module.rank_linearMap_self, lift_continuum, FirstOrder.Language.card_relations_sum, rank_mvPolynomial_mvPolynomial, HahnSeries.cardSupp_hsum_le, mk_psum, MvPolynomial.rank_eq_lift, MvPolynomial.cardinalMk_eq_max_lift, lift_min, mk_range_le_lift, hasCardinalLT_lift_iff, lift_id, lift_lt_nat_iff, FirstOrder.Language.Substructure.lift_card_closure_le, lift_injective, FirstOrder.Language.card_le_of_model_distinctConstantsTheory, FreeAlgebra.cardinalMk_eq_max_lift, lift_max, mk_prod, lift_preAleph, lift_lt_aleph_one, LinearMap.lift_rank_comp_le, IsBaseChange.lift_rank_eq_of_le_nonZeroDivisors, lift_le, Algebraic.cardinalMk_lift_le_max, FirstOrder.Language.BoundedFormula.card_le, FirstOrder.Language.empty.nonempty_embedding_iff

Cardinal.IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalCardinal.IsRegularCardinal.liftβ€”Cardinal.lift_ord
Ordinal.lift_cof
Cardinal.lift_le

CategoryTheory.Bicategory.LeftLift

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
17 mathmath: whiskering_map, w_assoc, CategoryTheory.Bicategory.lanLiftUnit_desc_assoc, IsKan.fac_assoc, CategoryTheory.Bicategory.LanLift.existsUnique, whisker_unit, whiskerHom_right, ofIdComp_right, IsKan.fac, whisker_lift, ofIdComp_hom, whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Bicategory.lanLiftLeftLift_lift, CategoryTheory.Bicategory.lanLiftUnit_desc, whiskerIdCancel_right, whiskerOfIdCompIsoSelf_inv_right, w

CategoryTheory.Bicategory.RightLift

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

CategoryTheory.CartesianMonoidalCategory

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
82 mathmath: CategoryTheory.Sheaf.cartesianMonoidalCategoryLift_val, CategoryTheory.GrpObj.lift_inv_comp_left, CategoryTheory.GrpObj.lift_inv_right_eq, CategoryTheory.GrpObj.lift_inv_comp_left_assoc, lift_leftUnitor_hom_assoc, CategoryTheory.GrpObj.left_inv_assoc, CategoryTheory.MonObj.lift_comp_one_right, CategoryTheory.Functor.Monoidal.lift_ΞΌ_assoc, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.GrpObj.lift_inv_comp_right, CategoryTheory.symmetricOfHasFiniteProducts_braiding_hom, CategoryTheory.comul_eq_lift, CategoryTheory.Grp.lift_hom, CategoryTheory.MonObj.lift_lift_assoc, CategoryTheory.MonObj.lift_comp_one_right_assoc, lift_braiding_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, comp_lift, CategoryTheory.GrpObj.lift_comp_inv_right_assoc, lift_lift_associator_inv_assoc, lift_lift_associator_inv, CategoryTheory.Mon.lift_hom, lift_apply, lift_braiding_inv, CommAlgCat.lift_unop_hom, lift_rightUnitor_hom_assoc, CategoryTheory.Hom.mul_def, CategoryTheory.MonObj.lift_comp_one_left, CategoryTheory.Functor.OplaxMonoidal.lift_Ξ΄, CategoryTheory.MonObj.instIsMonHomLift, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.forgetAdjToOver_unit_app, lift_lift_associator_hom, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv, CategoryTheory.GrpObj.lift_inv_left_eq, lift_whiskerLeft, lift_fst_snd, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, lift_braiding_hom_assoc, lift_snd, lift_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.GrpObj.eq_lift_inv_right, CategoryTheory.GrpObj.left_inv, comp_lift_assoc, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.GrpObj.lift_commutator_eq_mul_mul_inv_inv_assoc, lift_whiskerRight_assoc, lift_comp_fst_snd, lift_whiskerRight, mono_lift_of_mono_right, CategoryTheory.GrpObj.mulRight_hom, CategoryTheory.GrpObj.lift_comp_inv_left_assoc, lift_fst, lift_leftUnitor_hom, CategoryTheory.GrpObj.mulRight_inv, CategoryTheory.symmetricOfHasFiniteProducts_braiding_inv, lift_fst_assoc, lift_lift_associator_hom_assoc, mono_lift_of_mono_left, CategoryTheory.GrpObj.right_inv, CategoryTheory.GrpObj.lift_comp_inv_left, CategoryTheory.GrpObj.eq_lift_inv_left, lift_snd_comp_fst_comp_assoc, lift_map, CategoryTheory.MonObj.lift_comp_one_left_assoc, lift_map_assoc, lift_fst_comp_snd_comp, CategoryTheory.Over.lift_left, fullSubcategory_tensorProductIsBinaryProduct_lift_hom, lift_snd_comp_fst_comp, CategoryTheory.GrpObj.lift_comp_inv_right, CategoryTheory.Functor.Monoidal.lift_ΞΌ, CategoryTheory.Functor.OplaxMonoidal.lift_Ξ΄_assoc, lift_snd_fst, CategoryTheory.Functor.EssImageSubcategory.lift_def, lift_rightUnitor_hom, CategoryTheory.GrpObj.right_inv_assoc, homEquivToProd_symm_apply, lift_whiskerLeft_assoc, CategoryTheory.GrpObj.lift_inv_comp_right_assoc, lift_braiding_inv_assoc

CategoryTheory.Cat.FreeRefl

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: CategoryTheory.ReflQuiv.adj.homEquiv_symm_apply, lift_map, lift_spec, CategoryTheory.ReflQuiv.adj_counit_app, lift_obj

CategoryTheory.ChosenPullbacksAlong

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_snd, lift_fst, lift_snd_assoc, Over.lift_left, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, lift_fst_assoc

CategoryTheory.CommSq

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: fac_right_assoc, fac_right, fac_left_assoc, fac_left

CategoryTheory.CostructuredArrow.IsUniversal

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: fac, fac_assoc, hom_desc

CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: fac

CategoryTheory.Free

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_linear, lift_obj, lift_additive, lift_map_single, lift_map

CategoryTheory.FreeBicategory

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_mapId, lift_mapComp, lift_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj

CategoryTheory.FreeGroupoid

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
12 mathmath: map_comp_lift, lift_comp, lift_map_homMk, mapCompLift_inv_app, lift_obj_mk, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, CategoryTheory.Grpd.freeForgetAdjunction_counit_app, lift_id_comp_of, functorEquiv_symm_apply, lift_unique, lift_spec, mapCompLift_hom_app

CategoryTheory.Functor.Final

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: extendCocone_obj_ΞΉ_app, colimit_cocone_comp_aux, extendCocone_map_hom

CategoryTheory.Functor.Initial

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: extendCone_map_hom, limit_cone_comp_aux, extendCone_obj_Ο€_app

CategoryTheory.Functor.OneHypercoverDenseData.isSheaf_iff

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: fac_assoc, lift_map, lift_map_assoc, fac

CategoryTheory.Functor.WellOrderInductionData

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: map_lift, Extension.map_limit

CategoryTheory.Functor.relativelyRepresentable

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_fst, lift_snd, lift_snd_assoc, lift_fst_assoc

CategoryTheory.FunctorToTypes.prod

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_fst, CategoryTheory.FunctorToTypes.binaryProductLimit_lift, lift_app, lift_snd

CategoryTheory.GrothendieckTopology.OneHypercoverFamily.IsSheafIff

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: fac, fac', fac'_assoc

CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: map_lift, lift_f'

CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Diagram.IsTerminal

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: comm, hlift, uniq, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.isCardinalFiltered_aux, comm_assoc, lift_self, CategoryTheory.IsCardinalFiltered.exists_cardinal_directed.Dβ‚‚_W

CategoryTheory.IsKernelPair

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_snd_assoc, lift_snd, lift_fst_assoc, lift_fst

CategoryTheory.IsPullback

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, of_bot', lift_snd_assoc, of_right', lift_snd, lift_fst, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, lift_fst_assoc

CategoryTheory.IsRegularMono

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: fac, uniq, fac_assoc

CategoryTheory.Limits.Fan.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: fac_assoc, CategoryTheory.Limits.Multifork.toPiFork_Ο€_app_one, fac, CategoryTheory.Limits.MulticospanIndex.multiforkEquivPiFork_functor_obj_Ο€_app, CategoryTheory.Limits.Multifork.pi_condition_assoc, CategoryTheory.Limits.Multifork.toPiFork_Ο€_app_zero, CategoryTheory.Limits.Multifork.pi_condition

CategoryTheory.Limits.Fork.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_ΞΉ'_assoc, lift_ΞΉ'

CategoryTheory.Limits.IsImage

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
14 mathmath: lift_ΞΉ_assoc, lift_fac, ofArrowIso_lift, ofIsoI_lift, isoExt_hom, CategoryTheory.Limits.image.isImage_lift, self_lift, lift_fac_assoc, lift_ΞΉ, fac_lift, isoExt_inv, copy_lift, CategoryTheory.PreservesImage.iso_inv, fac_lift_assoc

CategoryTheory.Limits.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
124 mathmath: ofConeEquiv_symm_apply_desc, CategoryTheory.Limits.inr_of_isLimit, CategoryTheory.Limits.isLimitConeRightOpOfCocone_lift, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.Monad.ForgetCreatesLimits.liftedConeIsLimit_lift_f, CategoryTheory.Functor.isLimitConeOfIsRightKanExtension_lift, CategoryTheory.Limits.kernelBiprodSndIso_hom, CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv_symm_apply_Ο†, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inl, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct'_hom, CategoryTheory.Comma.coneOfPreserves_Ο€_app_right, CategoryTheory.Limits.isColimitCoconeLeftOpOfCone_desc, CategoryTheory.Limits.kernelBiprodFstIso_hom, CategoryTheory.Limits.isColimitOfConeRightOpOfCocone_desc, CompHausLike.pullback.isLimit_lift, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_isTerminalTensorUnit_lift_hom, CategoryTheory.Limits.isLimitOfCoconeOfConeRightOp_lift, CategoryTheory.Limits.kernelBiproductΟ€Iso_hom, CategoryTheory.Limits.BinaryFan.IsLimit.lift'_coe, CategoryTheory.Monad.ForgetCreatesLimits.conePoint_a, CategoryTheory.Limits.isLimitOfCoconeOfConeLeftOp_lift, lift_comp_conePointUniqueUpToIso_hom_assoc, CategoryTheory.Mon.limitConeIsLimit_lift_hom, nonempty_isLimit_iff_isIso_lift, liftConeMorphism_hom, lift_comp_conePointsIsoOfNatIso_inv, CategoryTheory.Limits.Types.binaryProductFunctor_obj_map, Profinite.isIso_indexCone_lift, lift_comp_conePointsIsoOfNatIso_hom, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_counit_f, CategoryTheory.Limits.PullbackCone.combine_Ο€_app, CategoryTheory.Limits.limit.isLimit_lift, AddCommGrpCat.HasLimit.productLimitCone_isLimit_lift, pullbackConeEquivBinaryFanFunctor_lift_left, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, ofIsoLimit_lift, CategoryTheory.Limits.BinaryBicone.ofLimitCone_inr, AddCommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.isColimitOfConeOfCoconeLeftOp_desc, CategoryTheory.Limits.isLimitConeOfCoconeUnop_lift, CategoryTheory.Limits.isColimitOfConeUnopOfCocone_desc, CategoryTheory.Limits.inl_of_isLimit, GrpCat.binaryProductLimitCone_isLimit_lift, hom_lift, CategoryTheory.Limits.coneOfConeCurry_Ο€_app, CategoryTheory.Limits.isColimitCoconeUnopOfCone_desc, AddGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.isLimitOfCoconeLeftOpOfCone_lift, ofConeEquiv_apply_desc, CategoryTheory.Limits.BinaryFan.rightUnitor_inv, CategoryTheory.Limits.CompleteLattice.limitCone_isLimit_lift, CategoryTheory.Limits.CompleteLattice.finiteLimitCone_isLimit_lift, CategoryTheory.Limits.Types.limitConeIsLimit_lift_coe, lift_comp_conePointUniqueUpToIso_hom, CategoryTheory.Limits.isLimitConeUnopOfCocone_lift, CategoryTheory.Limits.Fork.IsLimit.lift_ΞΉ, CategoryTheory.ShortComplex.LeftHomologyData.wΟ€_assoc, CategoryTheory.Limits.Types.binaryProductFunctor_map_app, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, CategoryTheory.FunctorToTypes.binaryProductLimit_lift, uniq, CategoryTheory.Limits.Bicone.ofLimitCone_ΞΉ, CategoryTheory.Limits.isLimitConeOfAdj_lift, CategoryTheory.Limits.isLimitOfCoconeRightOpOfCone_lift, CategoryTheory.Limits.isLimitConeOfCoconeRightOp_lift, CategoryTheory.Limits.mkFanLimit_lift, lift_comp_conePointUniqueUpToIso_inv_assoc, CategoryTheory.ShortComplex.LeftHomologyData.wΟ€, CategoryTheory.Limits.isLimitOfCoconeOfConeUnop_lift, CategoryTheory.Limits.isKernelCompMono_lift, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, lift_comp_conePointUniqueUpToIso_inv, CategoryTheory.Limits.coneOfConeUncurry_Ο€_app, CategoryTheory.Limits.isColimitOfConeLeftOpOfCocone_desc, CategoryTheory.Limits.limitConeOfUnique_isLimit_lift, mkConeMorphism_lift, fac_assoc, CategoryTheory.Limits.BinaryFan.assoc_snd, CategoryTheory.Limits.isLimitConeLeftOpOfCocone_lift, CategoryTheory.Limits.isLimitConeOfCoconeLeftOp_lift, CategoryTheory.Comma.coneOfPreserves_pt_hom, CategoryTheory.Limits.Fan.IsLimit.lift_proj, CategoryTheory.Limits.isColimitCoconeRightOpOfCone_desc, CategoryTheory.Limits.isColimitCoconeOfConeRightOp_desc, CategoryTheory.Limits.PullbackCone.combine_pt_map, CategoryTheory.Limits.Fork.IsLimit.lift_ΞΉ_assoc, CategoryTheory.Preadditive.isLimitForkOfKernelFork_lift, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.Limits.limit.pre_eq, conePointsIsoOfEquivalence_hom, CategoryTheory.Limits.Fan.IsLimit.lift_proj_assoc, conePointsIsoOfEquivalence_inv, lift_comp_conePointsIsoOfNatIso_inv_assoc, CategoryTheory.Limits.Fork.IsLimit.mk_lift, ModuleCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Comonad.beckEqualizer_lift, CategoryTheory.Limits.isColimitOfConeOfCoconeRightOp_desc, lift_comp_conePointsIsoOfNatIso_hom_assoc, assoc_lift, lift_self, CategoryTheory.Limits.combineCones_pt_map, CategoryTheory.Limits.opProductIsoCoproduct'_inv_comp_lift, CategoryTheory.Limits.BinaryFan.leftUnitor_inv, CategoryTheory.Limits.Multifork.IsLimit.mk_lift, CategoryTheory.Limits.isColimitCoconeOfConeLeftOp_desc, CommGrpCat.binaryProductLimitCone_isLimit_lift, CategoryTheory.Limits.splitMonoOfIdempotentOfIsLimitFork_retraction, CategoryTheory.Limits.isLimitOfCoconeUnopOfCone_lift, binaryFanSwap_lift, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.f'_eq, HomologicalComplex.extend.leftHomologyData.lift_d_comp_eq_zero_iff, CategoryTheory.CartesianMonoidalCategory.fullSubcategory_tensorProductIsBinaryProduct_lift_hom, CategoryTheory.Limits.isColimitOfConeOfCoconeUnop_desc, CategoryTheory.preserves_lift_mapCone, CategoryTheory.Limits.BinaryFan.assocInv_fst, CategoryTheory.Limits.isColimitCoconeOfConeUnop_desc, CategoryTheory.Comonad.ForgetCreatesLimits'.liftedConeIsLimit_lift_f, ModuleCat.HasLimit.productLimitCone_isLimit_lift, CategoryTheory.Limits.Types.binaryProductLimit_lift, Profinite.isIso_asLimitCone_lift, fac, CategoryTheory.Limits.combineCones_Ο€_app_app, CategoryTheory.Comma.coneOfPreserves_Ο€_app_left, CategoryTheory.Limits.Bicone.ΞΉ_of_isLimit

CategoryTheory.Limits.Multiequalizer

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_ΞΉ_assoc, CategoryTheory.GrothendieckTopology.diagram_map, CategoryTheory.GrothendieckTopology.diagramPullback_app, CategoryTheory.GrothendieckTopology.diagramNatTrans_app, lift_ΞΉ

CategoryTheory.Limits.Multifork.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: fac_assoc, fac

CategoryTheory.Limits.Pi

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
33 mathmath: CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.isCoseparator_iff_mono, lift_Ο€_assoc, CategoryTheory.Limits.Types.pi_lift_Ο€_apply', CategoryTheory.evaluationRightAdjoint_obj_map, CategoryTheory.Equalizer.firstObjEqFamily_inv, CategoryTheory.evaluationAdjunctionLeft_unit_app_app, CategoryTheory.evaluationRightAdjoint_map_app, CategoryTheory.Limits.biproduct.isoProduct_hom, CategoryTheory.Limits.instMonoLiftΟ€, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_Ο€_app, lift_Ο€, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinset_obj_map, CategoryTheory.Limits.piPiIso_hom, CategoryTheory.Limits.FormalCoproduct.evalOp_map_app, CategoryTheory.Pretriangulated.productTriangle.lift_hom₁, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_Ο€_app, CategoryTheory.Limits.map_lift_piComparison_assoc, CategoryTheory.Pretriangulated.productTriangle.lift_hom₃, CategoryTheory.Limits.desc_op_comp_opCoproductIsoProduct_hom, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_map, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCone_Ο€_app, CategoryTheory.Limits.piPiIso_inv, CategoryTheory.Limits.FormalCoproduct.evalOp_obj_map, CategoryTheory.Limits.Fan.nonempty_isLimit_iff_isIso_piLift, CategoryTheory.Limits.Types.pi_lift_Ο€_apply, CategoryTheory.Pretriangulated.productTriangle.lift_homβ‚‚, CategoryTheory.Limits.FormalCoproduct.mapPower_Ο†, CategoryTheory.Limits.opProductIsoCoproduct_inv_comp_lift, CategoryTheory.Limits.HasBiproductsOfShape.colimIsoLim_hom_app, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_inv_app_app, CategoryTheory.Limits.map_lift_piComparison, CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetObj_map

CategoryTheory.Limits.PullbackCone.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_fst, lift_snd, lift_fst_assoc, lift_snd_assoc

CategoryTheory.Limits.Types.Image

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_fac

CategoryTheory.Limits.Wedge.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_ΞΉ, lift_ΞΉ_assoc

CategoryTheory.Limits.WidePullback

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
11 mathmath: CategoryTheory.Arrow.mapCechNerve_app, eq_lift_of_comp_eq, lift_base_assoc, lift_base, hom_eq_lift, CategoryTheory.Arrow.cechNerve_map, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_left_map, lift_Ο€_assoc, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, lift_Ο€

CategoryTheory.Limits.WidePullbackCone.IsLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_base, lift_Ο€_assoc, lift_base_assoc, lift_Ο€

CategoryTheory.Limits.biprod

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
34 mathmath: lift_eq, uniqueUpToIso_hom, HomologicalComplex.biprod_lift_fst_f_assoc, lift_snd, HomologicalComplex.biprod_lift_fst_f, isoProd_inv, symmetry'_assoc, CategoryTheory.Pretriangulated.binaryProductTriangleIsoBinaryBiproductTriangle_hom_homβ‚‚, CategoryTheory.CommSq.shortComplex_f, symmetry', lift_mapBiprod, associator_hom, lift_fst, mono_lift_of_mono_right, HomologicalComplex.biprod_lift_snd_f, braiding_inv, lift_fst_assoc, map_lift_mapBiprod, conePointUniqueUpToIso_hom, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_right_addition, CategoryTheory.Functor.mapBiprod_hom, add_eq_lift_desc_id, lift_snd_assoc, lift_desc_assoc, braiding_hom, CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_left_addition, CategoryTheory.CommSq.shortComplex'_f, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, add_eq_lift_id_desc, mono_lift_of_mono_left, HomologicalComplex.biprod_lift_snd_f_assoc, CategoryTheory.ShortComplex.Splitting.isoBinaryBiproduct_hom, lift_desc, associator_inv

CategoryTheory.Limits.biproduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
26 mathmath: lift_map, CategoryTheory.Limits.biproductBiproductIso_inv, CategoryTheory.Limits.biproductBiproductIso_hom, lift_matrix_assoc, lift_desc_assoc, ΞΉ_matrix, reindex_inv, lift_desc, ΞΉ_matrix_assoc, CategoryTheory.Mat_.isoBiproductEmbedding_hom, lift_Ο€_assoc, CategoryTheory.Mat_.embeddingLiftIso_inv_app, CategoryTheory.Functor.mapBiproduct_hom, isoProduct_inv, CategoryTheory.Limits.biproductUniqueIso_inv, fromSubtype_eq_lift, lift_map_assoc, uniqueUpToIso_hom, whiskerEquiv_inv_eq_lift, lift_matrix, lift_eq, lift_Ο€, map_lift_mapBiprod, whiskerEquiv_hom_eq_lift, CategoryTheory.Limits.HasBiproductsOfShape.colimIsoLim_inv_app, conePointUniqueUpToIso_hom

CategoryTheory.Limits.end_

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_Ο€, lift_Ο€_assoc

CategoryTheory.Limits.equalizer

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: lift_ΞΉ, CategoryTheory.regularTopology.mapToEqualizer_eq_comp, lift_ΞΉ_assoc, CategoryTheory.regularTopology.equalizerCondition_iff_isIso_lift, CategoryTheory.Limits.map_lift_equalizerComparison_assoc, CategoryTheory.Limits.map_lift_equalizerComparison, CategoryTheory.Comonad.ComonadicityInternal.comparisonRightAdjointHomEquiv_apply, isoSourceOfSelf_inv

CategoryTheory.Limits.image

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
13 mathmath: lift_mk_factorThruImage, lift_fac_assoc, CategoryTheory.Limits.HasImage.uniq, fac_lift, CategoryTheory.PreservesImage.iso_hom, CategoryTheory.MonoOver.image_map, lift_mono, fac_lift_assoc, lift_fac, isImage_lift, lift_mk_factorThruImage_assoc, lift_mk_comp_assoc, lift_mk_comp

CategoryTheory.Limits.kernel

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
39 mathmath: CategoryTheory.ShortComplex.Exact.epi_kernelLift, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_H, CategoryTheory.cokernelUnopUnop_inv, CategoryTheory.kernelOpUnop_hom, congr_inv, CategoryTheory.Limits.kernelCompMono_hom, CategoryTheory.Abelian.im_map, CategoryTheory.Limits.lift_comp_kernelIsoOfEq_hom_assoc, lift_ΞΉ_apply, CategoryTheory.kernelUnopUnop_inv, CategoryTheory.Limits.lift_comp_kernelIsoOfEq_hom, CategoryTheory.Limits.kernelIsIsoComp_hom, CategoryTheory.cokernelUnopOp_hom, CategoryTheory.Limits.kernelIsIsoComp_inv, CategoryTheory.ShortComplex.cyclesIsoKernel_hom, lift_mono, lift_map, lift_ΞΉ_assoc, CategoryTheory.Abelian.imageIsoImage_inv, CategoryTheory.kernelUnopOp_hom, CategoryTheory.Limits.map_lift_kernelComparison, CategoryTheory.Limits.map_lift_kernelComparison_assoc, CategoryTheory.ShortComplex.HasLeftHomology.hasCokernel, CategoryTheory.cokernelOpUnop_hom, CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernelOfHasCokernel_Ο€, CategoryTheory.Abelian.OfCoimageImageComparisonIsIso.imageMonoFactorisation_e, CategoryTheory.ShortComplex.exact_iff_epi_kernel_lift, CategoryTheory.Limits.kernelZeroIsoSource_inv, SheafOfModules.relationsOfIsCokernelFree_s, lift_ΞΉ, CategoryTheory.kernelOpOp_inv, lift_zero, CategoryTheory.Limits.factorThruKernelSubobject_comp_kernelSubobjectIso, congr_hom, CategoryTheory.Limits.lift_comp_kernelIsoOfEq_inv, CategoryTheory.Limits.kernelCompMono_inv, CategoryTheory.Limits.lift_comp_kernelIsoOfEq_inv_assoc, CategoryTheory.cokernelOpOp_inv, CategoryTheory.Limits.ker_map

CategoryTheory.Limits.limit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
33 mathmath: CategoryTheory.Limits.ProductsFromFiniteCofiltered.liftToFinsetLimitCone_isLimit_lift, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom, CategoryTheory.Functor.pointwiseRightKanExtension_lift_app, CategoryTheory.Mon.limitConeIsLimit_lift_hom, lift_post, isLimit_lift, CategoryTheory.Limits.kernelBiprodFstIso_inv, CategoryTheory.Limits.productUniqueIso_inv, CategoryTheory.lift_comp_preservesLimitIso_hom_assoc, CategoryTheory.lift_comp_preservesLimitIso_hom, CategoryTheory.Limits.kernelBiproductΟ€Iso_inv, lift_Ο€_app, CategoryTheory.Limits.Types.Limit.lift_Ο€_apply, lift_Ο€_apply, lift_pre, coneMorphism_hom, lift_Ο€_assoc, lift_map, CategoryTheory.Functor.pointwiseRightKanExtension_map, CategoryTheory.Limits.kernelBiprodSndIso_inv, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, lift_Ο€_app_assoc, CategoryTheory.CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, CategoryTheory.Comonad.ComonadicityInternal.comparisonAdjunction_unit_app, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv, lift_map_assoc, CategoryTheory.Limits.Types.Limit.lift_Ο€_apply', lift_Ο€, lift_cone, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_hom_assoc, CategoryTheory.Limits.kernelBiproductToSubtypeIso_inv, lift_extend, CategoryTheory.Limits.HasLimit.lift_isoOfNatIso_inv_assoc

CategoryTheory.Limits.prod

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
78 mathmath: TopCat.isInducing_pullback_to_prod, CategoryTheory.Dial.braiding_inv_f, lift_map, CategoryTheory.Dial.rightUnitorImpl_inv_f, CategoryTheory.Dial.tensorHom_F, CategoryTheory.Limits.isPullback_equalizer_prod, CategoryTheory.monoidalOfHasFiniteProducts.associator_hom, lift_fst_assoc, rightUnitor_inv, CategoryTheory.prodComonad_Ξ΄_app, symmetry'_assoc, HomotopicalAlgebra.FibrantBrownFactorization.mk'_i, CategoryTheory.Dial.associator_hom_F, CategoryTheory.Dial.associatorImpl_inv_F, lift_fst, HomotopicalAlgebra.FibrantBrownFactorization.mk'_Z, CategoryTheory.Dial.rightUnitor_hom_F, CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst_eq_pullback_snd, CategoryTheory.Dial.comp_le_lemma, mono_lift_of_mono_right, mono_lift_of_mono_left, CategoryTheory.Pretriangulated.binaryProductTriangleIsoBinaryBiproductTriangle_inv_homβ‚‚, CategoryTheory.Dial.rightUnitorImpl_hom_F, leftUnitor_inv, lift_map_assoc, CategoryTheory.Dial.leftUnitor_inv_f, CategoryTheory.Dial.braiding_inv_F, CategoryTheory.Dial.associator_inv_f, CategoryTheory.Dial.braiding_hom_f, CategoryTheory.Dial.rightUnitor_inv_f, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.Dial.associatorImpl_hom_F, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₁, CategoryTheory.Dial.Hom.le, CategoryTheory.Dial.leftUnitor_hom_F, CategoryTheory.Dial.whiskerRight_F, symmetry', CategoryTheory.NonPreadditiveAbelian.lift_sub_lift, associator_hom, CategoryTheory.Dial.tensorHomImpl_F, TopCat.range_pullback_to_prod, associator_inv, CategoryTheory.Dial.comp_F, AlgebraicGeometry.instQuasiCompactLiftSchemeIdOfQuasiSeparatedSpaceCarrierCarrierCommRingCat, AlgebraicGeometry.Scheme.isSeparated_iff_isClosedImmersion_prod_lift, CategoryTheory.Dial.associator_inv_F, braiding_hom, CategoryTheory.NonPreadditiveAbelian.lift_map_assoc, CategoryTheory.Limits.biprod.isoProd_hom, TopCat.isEmbedding_pullback_to_prod, CategoryTheory.Dial.leftUnitorImpl_hom_F, HomotopicalAlgebra.FibrantBrownFactorization.mk'_r, comp_lift, CategoryTheory.Dial.braiding_hom_F, lift_snd, CategoryTheory.Dial.associatorImpl_inv_f, CategoryTheory.Dial.whiskerLeft_F, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.Dial.associator_hom_f, AlgebraicGeometry.IsImmersion.instLiftSchemeId, CategoryTheory.Dial.leftUnitorImpl_inv_f, CategoryTheory.Dial.associatorImpl_hom_f, comp_diag, braiding_inv, CategoryTheory.NonPreadditiveAbelian.sub_def, AlgebraicGeometry.Scheme.instIsClosedImmersionLiftIdOfIsSeparated, CategoryTheory.NonPreadditiveAbelian.lift_map, CategoryTheory.Limits.mono_pullback_to_prod, CategoryTheory.NonPreadditiveAbelian.lift_Οƒ, CategoryTheory.NonPreadditiveAbelian.lift_Οƒ_assoc, HomotopicalAlgebra.FibrantBrownFactorization.mk'_p, CategoryTheory.Over.forgetAdjStar_unit_app_left, lift_snd_assoc, comp_lift_assoc, AlgebraicGeometry.quasiSeparatedSpace_iff_quasiCompact_prod_lift, lift_fst_comp_snd_comp, CategoryTheory.monoidalOfHasFiniteProducts.associator_inv, lift_fst_snd

CategoryTheory.Limits.pullback

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
43 mathmath: AlgebraicGeometry.Scheme.Cover.LocallyDirected.directed, CategoryTheory.Limits.pullbackFstFstIso_hom, CategoryTheory.PreOneHypercover.cylinderHom_h₁, lift_fst_assoc, AlgebraicGeometry.IsSeparated.instIsClosedImmersionLiftSchemeId, CategoryTheory.PreZeroHypercover.interLift_hβ‚€, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, lift_snd, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.baseChange_map', AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_index, AlgebraicGeometry.Scheme.Cover.exists_lift_trans_eq, CategoryTheory.Limits.pullback_lift_diagonal_isPullback, CategoryTheory.PreOneHypercover.sieve₁_eq_pullback_sieve₁', lift_snd_assoc, CategoryTheory.ShortComplex.SnakeInput.lift_Ο†β‚‚, CategoryTheory.Over.mapPullbackAdj_unit_app, CategoryTheory.Over.pullback_map_left, CategoryTheory.Functor.PullbackObjObj.ofHasPullback_Ο€, CategoryTheory.ShortComplex.SnakeInput.lift_Ο†β‚‚_assoc, CategoryTheory.PreOneHypercover.sieveβ‚€_cylinder, HomotopicalAlgebra.PathObject.trans_ΞΉ, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.PreOneHypercover.sieve₁'_cylinder, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.PreOneHypercover.toPullback_cylinder, CategoryTheory.Over.lift_left, CategoryTheory.PreOneHypercover.cylinder_p₁, CategoryTheory.Limits.map_lift_pullbackComparison, CategoryTheory.PreOneHypercover.cylinder_pβ‚‚, AlgebraicGeometry.Scheme.Cover.intersectionOfLocallyDirected_f, lift_fst, CategoryTheory.Limits.map_lift_pullbackComparison_assoc, lift_fst_snd, AlgebraicGeometry.Scheme.Pullback.lift_comp_ΞΉ, CategoryTheory.Functor.relativelyRepresentable.toPullbackTerminal, CategoryTheory.Limits.pullbackFstFstIso_inv, HomotopicalAlgebra.PrepathObject.RightHomotopy.trans_h, CategoryTheory.Limits.pullback_lift_map_isPullback, HomotopicalAlgebra.PrepathObject.trans_ΞΉ, CategoryTheory.PreOneHypercover.cylinderHom_hβ‚€, CategoryTheory.PreOneHypercover.cylinder_Y

CategoryTheory.Limits.wideEqualizer

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_ΞΉ_assoc, lift_ΞΉ

CategoryTheory.Localization

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: CategoryTheory.Functor.instIsRightDerivedFunctorLiftInvFac, CategoryTheory.Functor.instIsLeftDerivedFunctorLiftHomFac

CategoryTheory.Localization.Construction

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: CategoryTheory.Localization.instIsEquivalenceLocalizationLift, lift_obj, WhiskeringLeftEquivalence.inverse_map_app, lift_map, CategoryTheory.Localization.strictUniversalPropertyFixedTargetQ_lift, fac, CategoryTheory.Functor.IsLocalization.isEquivalence

CategoryTheory.Localization.StrictUniversalPropertyFixedTarget

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: CategoryTheory.Localization.strictUniversalPropertyFixedTargetId_lift, CategoryTheory.Localization.strictUniversalPropertyFixedTargetQ_lift, fac

CategoryTheory.Mat_

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_obj, embeddingLiftIso_hom_app, embeddingLiftIso_inv_app, equivalenceSelfOfHasFiniteBiproducts_functor, lift_additive, lift_map

CategoryTheory.MonoOver

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: congr_unitIso, lift_obj_arrow, congr_functor, congr_inverse, lift_obj_obj, lift_map_hom, congr_counitIso, lift_comm

CategoryTheory.MorphismProperty.Comma

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_obj_toComma, lift_map_hom

CategoryTheory.MorphismProperty.LeftFraction.Localization.StrictUniversalPropertyFixedTarget

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: fac

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
23 mathmath: CategoryTheory.Equivalence.congrFullSubcategory_inverse, instCommShiftHomFunctorLiftCompΞΉIso, lift_obj_obj, topEquivalence_counitIso, lift_map, CategoryTheory.Equivalence.congrFullSubcategory_counitIso, CategoryTheory.RightExactFunctor.whiskeringLeft_map_app, CategoryTheory.RightExactFunctor.whiskeringRight_map_app, CategoryTheory.LeftExactFunctor.whiskeringRight_map_app, CategoryTheory.LeftExactFunctor.whiskeringLeft_map_app, instFullFullSubcategoryLift, CategoryTheory.ExactFunctor.whiskeringLeft_map_app, CategoryTheory.Equivalence.congrFullSubcategory_unitIso, CategoryTheory.ExactFunctor.whiskeringRight_map_app, CategoryTheory.Functor.instAdditiveFullSubcategoryLift, CategoryTheory.Equivalence.congrFullSubcategory_functor, CategoryTheory.Functor.toEssImageCompΞΉ_inv_app, ΞΉ_obj_lift_map, CategoryTheory.Functor.toEssImageCompΞΉ_hom_app, instFaithfulFullSubcategoryLift, ΞΉ_obj_lift_obj, topEquivalence_inverse, isTriangulated_lift

CategoryTheory.Over

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_obj, liftCone_Ο€_app, liftCocone_ΞΉ_app, liftCone_pt, liftCocone_pt, lift_map

CategoryTheory.Paths

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_unique, lift_spec, lift_cons, lift_toPath, lift_nil

CategoryTheory.PreservesFiniteLimitsOfFlat

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: fac

CategoryTheory.Presieve.CoverByImageStructure

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: fac, CategoryTheory.Functor.IsCoverDense.Types.pushforwardFamily_def, fac_assoc

CategoryTheory.Presieve.FunctorPushforwardStructure

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: fac

CategoryTheory.Pretriangulated.productTriangle

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_hom₁, lift_hom₃, lift_homβ‚‚

CategoryTheory.ProjectiveResolution

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_commutes_zero_assoc, lift_commutes_zero, lift_commutes, lift_commutes_assoc

CategoryTheory.Quiv

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_obj, lift_map

CategoryTheory.Quotient

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
10 mathmath: lift.isLift_hom, LiftCommShift.iso_hom_app, liftCommShift_compatibility, lift_map_functor_map, lift_unique, lift_obj_functor_obj, liftCommShift_commShiftIso, lift.isLift_inv, LiftCommShift.iso_inv_app, lift_spec

CategoryTheory.RanIsSheafOfIsCocontinuous

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: fac_assoc, fac', fac

CategoryTheory.ShortComplex.Exact

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_f, lift_f_assoc

CategoryTheory.Subfunctor

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_ΞΉ, lift_ΞΉ_assoc, lift_app_coe, Subpresheaf.lift_ΞΉ

CategoryTheory.Subfunctor.Subpresheaf

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

CategoryTheory.Subfunctor.Subpresheaf.equalizer

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

CategoryTheory.Subfunctor.equalizer

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_ΞΉ', lift_ΞΉ'_assoc, lift_ΞΉ, lift_ΞΉ_assoc, CategoryTheory.Subfunctor.Subpresheaf.equalizer.lift_ΞΉ, CategoryTheory.Subfunctor.Subpresheaf.equalizer.lift_ΞΉ'

CategoryTheory.Subobject

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: CategoryTheory.Abelian.subobjectIsoSubobjectOp_apply, lift_mk, CategoryTheory.Limits.kernelOrderHom_coe, CategoryTheory.Abelian.subobjectIsoSubobjectOp_symm_apply, CategoryTheory.Limits.cokernelOrderHom_coe

CategoryTheory.Under

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: liftCone_pt, lift_obj, liftCocone_ΞΉ_app, liftCone_Ο€_app, liftCocone_pt, lift_map

CategoryTheory.WithInitial

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
11 mathmath: liftToInitialUnique_hom_app, inclLift_hom_app, liftStar_lift_map, inclLiftToInitial_inv_app, inclLift_inv_app, inclLiftToInitial_hom_app, lift_map, liftStar_hom, liftToInitialUnique_inv_app, lift_obj, liftStar_inv

CategoryTheory.WithTerminal

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
11 mathmath: liftStar_inv, liftStar_hom, lift_map, inclLift_hom_app, lift_obj, liftToTerminalUnique_inv_app, lift_map_liftStar, inclLiftToTerminal_inv_app, inclLift_inv_app, inclLiftToTerminal_hom_app, liftToTerminalUnique_hom_app

CliffordAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: ExteriorAlgebra.lift_symm_apply, lift_ΞΉ_apply, range_lift, ΞΉ_range_map_lift, ΞΉ_comp_lift, lift_unique, lift_symm_apply, lift_comp_ΞΉ, GradedAlgebra.lift_ΞΉ_eq

CliffordAlgebra.even

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_ΞΉ, lift_symm_apply_bilin

CochainComplex.mappingCone

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: lift_f_fst_v, lift_f_fst_v_assoc, ofHom_lift, lift_fst, lift_snd, lift_desc_f, lift_f_snd_v, lift_f, lift_f_snd_v_assoc

CompHaus

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_lifts, lift_lifts_assoc

CompHausLike.pullback

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_fst_assoc, isLimit_lift, lift_fst, lift_snd_assoc, lift_snd

Complex

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_apply, lift_symm_apply_coe

Con

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: lift_surjective_of_surjective, lift_comp_mk', lift_unique, lift_mk', lift_coe, lift_apply_mk', lift_range, map_apply

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–β€”Convex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”smul_le_smul_of_nonneg_right
zero_le_one
zero_smul
add_smul
one_smul
smul_assoc

CoxeterSystem

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_apply_simple

DirectLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_def, Module.lift_apply, lift_injective

DirectLimit.Module

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_of, lift_apply

DirectLimit.Ring

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_of

DualNumber

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: range_lift, lift_apply_eps, lift_inlAlgHom_eps, lift_smul, lift_apply_apply, coe_lift_symm_apply, lift_apply_inl, lift_op_smul, lift_comp_inlHom

ENat

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
14 mathmath: Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map, lt_lift_iff, lift_one, lift_zero, lift_le_iff, lift_lt_iff, coe_lift, lift_eq_toNat_of_lt_top, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, lift_coe, PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, lift_ofNat, le_lift_iff, lift_add

ExteriorAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_symm_apply, lift_ΞΉ_apply, lift_comp_ΞΉ, ΞΉ_comp_lift, lift_unique

Filter

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
41 mathmath: lift_mono', lift_lift_same_eq_lift, uniformity_lift_le_comp, lift_iInf_le, map_lift_eq, lift_le, prod_lift_lift, lift'_lift_assoc, lift_assoc, prod_lift'_lift', le_lift, lift_top, lift_principal, monotone_lift, nhds_nhds_eq_uniformity_uniformity_prod, mem_lift, comap_lift_eq2, lift_iInf_of_map_univ, lift_lift'_same_le_lift', lift_lift'_assoc, lift_map_le, sInter_lift_sets, lift_comm, mem_lift_sets, lift_lift'_same_eq_lift', lift_inf, lift_iInf_of_directed, lift_const, lift_neBot_iff, lift_lift_same_le_lift, lift_iInf, map_lift_eq2, lift_principal2, tendsto_lift, lift_nhds_left, HasBasis.lift, lift_nhds_right, comap_lift_eq, prod_def, lift_mono, HasBasis.mem_lift_iff

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalFilter.HasBasis
Monotone
Set
Filter
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.instPartialOrder
Filter.liftβ€”mem_lift_iff

FiniteArchimedeanClass

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_mk

FiniteMulArchimedeanClass

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_mk

Finsupp

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: Rep.diagonalSuccIsoFree_inv_hom_single, Rep.leftRegularHom_hom, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, llift_apply, lift_apply, Rep.indResAdjunction_counit_app_hom_hom, lift_symm_apply, Rep.indResHomEquiv_symm_apply_hom

FirstOrder.Language.DirectLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_unique, lift_quotient_mk'_sigma_mk', lift_of, range_lift

FreeAbelianGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
13 mathmath: lift_add, liftMonoid_coe_addMonoidHom, liftAddGroupHom_apply, lift_unique, lift_comp_apply, mul_def, liftMonoid_coe, lift_comp, lift_add_apply, lift_neg_apply, lift_apply_of, lift_neg, liftMonoid_symm_coe

FreeAddGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
11 mathmath: lift_mk, lift_apply_of, lift_unique, closure_eq_range, lift_of_eq_id, map_eq_lift, range_lift_le, lift_symm_apply, lift_eq_sum_map, lift_of_apply, range_lift_eq_closure

FreeAddGroup.Red.Step

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalFreeAddGroup.Red.StepFreeAddGroup.Lift.auxβ€”AddSemigroup.to_isLawfulIdentity
AddSemigroup.to_isAssociative
neg_add_cancel_left
add_neg_cancel_left

FreeAddMagma

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_comp_of, lift_comp_of', lift_symm_apply, lift_of

FreeAddMonoid

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
13 mathmath: lift_symm_apply, lift_ofList, lift_apply, lift_comp_of, lift_eval_of, mrange_lift, lift_restrict, AddMonoid.Coprod.lift_apply_mk, comp_lift, lift_of_comp_eq_map, hom_map_lift, CharacterModule.homEquiv_apply_apply, AddSubmonoid.closure_eq_mrange

FreeAddSemigroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_comp_of, lift_symm_apply, lift_of, lift_of_add, lift_comp_of'

FreeAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
12 mathmath: lift_comp_ΞΉ, liftAux_eq, lift_ΞΉ_apply, Algebra.adjoin_range_eq_range_freeAlgebra_lift, MonoidAlgebra.freeAlgebra_lift_of_surjective_of_closure, ΞΉ_comp_lift, lift_unique, lift_symm_apply, AlgCat.free_map, FreeLieAlgebra.universalEnvelopingEquivFreeAlgebra_symm_apply, Algebra.adjoin_eq_range_freeAlgebra_lift, AddMonoidAlgebra.freeAlgebra_lift_of_surjective_of_closure

FreeCommRing

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: FirstOrder.Ring.lift_genericPolyMap, FirstOrder.Ring.realize_termOfFreeCommRing, FirstOrder.Field.lift_genericMonicPoly, lift_of, lift_comp_of

FreeGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
16 mathmath: lift_of_eq_id, lift_apply_of, FreeGroupBasis.lift_apply_apply, lift_unique, injective_lift_of_ping_pong, lift_symm_apply, range_lift_eq_closure, closure_eq_range, freeGroupEquivCoprodI_symm_apply, freeGroupEquivCoprodI_apply, FreeAbelianGroup.liftAddEquiv_apply_apply, lift_mk, lift_eq_prod_map, range_lift_le, map_eq_lift, lift_of_apply

FreeGroup.Red.Step

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalFreeGroup.Red.StepFreeGroup.Lift.auxβ€”Semigroup.to_isLawfulIdentity
Semigroup.to_isAssociative
inv_mul_cancel_left
mul_inv_cancel_left

FreeGroupBasis

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_apply_apply, lift_symm_apply

FreeLieAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: of_comp_lift, lift_comp_of, lift_unique, universalEnvelopingEquivFreeAlgebra_apply, lift_symm_apply, lift_of_apply

FreeMagma

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_of, lift_symm_apply, lift_comp_of, lift_comp_of'

FreeMonoid

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
12 mathmath: lift_restrict, lift_of_comp_eq_map, lift_ofList, lift_comp_of, comp_lift, lift_eval_of, mrange_lift, hom_map_lift, lift_symm_apply, lift_apply, Monoid.Coprod.lift_apply_mk, Submonoid.closure_eq_mrange

FreeNonUnitalNonAssocAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: of_comp_lift, lift_unique, lift_symm_apply, lift_of_apply, lift_comp_of

FreeRing

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp_of, lift_of

FreeSemigroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_symm_apply, lift_comp_of', lift_of_mul, lift_comp_of, lift_of

Function.Periodic

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: Real.fourierCoeff_tsum_comp_add, lift_coe

GradedTensorProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_tmul

HNNExtension

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_of, lift_t

Hausdorffification

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_eq, lift_comp_of, lift_of

Ideal.Quotient

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
10 mathmath: lift_surjective_of_surjective, RingHom.lift_injective_of_ker_le_ideal, lift_mk, Ideal.ker_quotient_lift, Ideal.injective_lift_iff, MvPolynomial.quotientEquivQuotientMvPolynomial_leftInverse, liftₐ_apply, MvPolynomial.quotientEquivQuotientMvPolynomial_rightInverse, AlgebraicGeometry.Scheme.Hom.toImage_app, lift_comp_mk

Ideal.ResidueField

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_algebraMap

IntermediateField

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
13 mathmath: lift_inj, lift_le, lift_adjoin_simple, lift_top, lift_inf, InfiniteGalois.restrict_fixedField, mem_lift, lift_injective, lift_bot, lift_adjoin, lift_sup, liftAlgEquiv_apply, lift_restrict

IsAdicComplete

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: mkQ_comp_lift, of_lift, of_comp_lift, eq_lift, mk_lift

IsAdicComplete.StrictMono

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: eq_lift, of_comp_lift, of_lift, mkQ_comp_lift, mk_lift

IsAdjoinRoot

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
10 mathmath: eq_lift, lift_self, lift_root, lift_map, lift_algebraMap, lift_self_apply, lift_algEquiv, apply_eq_lift, coe_liftHom, lift_algebraMap_apply

IsAlgClosed

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

IsBaseChange

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp, lift_eq

IsFractionRing

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
11 mathmath: FractionRing.algebraMap_liftAlgebra, coe_liftAlgHom, AlgebraicIndependent.lift_reprField, liftAlgHom_toRingHom, lift_fieldRange_eq_of_range_eq, AlgebraicIndependent.aevalEquivField_apply_coe, lift_unique, lift_fieldRange, lift_mk', lift_algebraMap, liftAlgHom_apply

IsFreeGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_of, lift_symm_apply

IsIntegralClosure

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, algebraMap_lift, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply

IsLocalRing.ResidueField

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp_residue, lift_residue_apply

IsLocalization

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
16 mathmath: lift_algebraMap_eq_algebraMap, bijective_lift_piRingHom_algebraMap_comp_piEvalRingHom, lift_mk'_spec, lift_comp, lift_eq, coe_liftAlgHom, liftAlgHom_apply, lift_mk', Localization.mapToFractionRing_apply, lift_of_comp, lift_id, liftAlgHom_toRingHom, lift_injective_iff, lift_unique, lift_eq_iff, lift_surjective_iff

IsLocalization.Away

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp, lift_eq

IsLocalizedModule

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_comp, lift_comp_iso, lift_apply, lift_unique, lift_iso

IsNormalClosure

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

IsSepClosed

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_def

IsSymmetricAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_eq, lift_unique, lift_comp_linearMap

IsTensorProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_eq

LinearAlgebra.FreeProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_unique, lift_algebraMap, lift_symm_apply, lift_apply, lift_comp_ΞΉ

LinearOrder

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

LocalizedModule

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
8 mathmath: lift_unique, IsLocalizedModule.lift_comp_iso, lift_comp, lift_mk, Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule, lift_mk_one, IsLocalizedModule.lift_iso, Module.FinitePresentation.exists_basis_localizedModule_powers

LocallyConstant

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_comp_proj

Magma.AssocQuotient

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_comp_of', lift_comp_of, lift_of, lift_symm_apply

Mathlib.Tactic

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryCoherence.LiftHom

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Mathlib.Tactic.BicategoryCoherence.LiftHomβ‚‚

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Mathlib.Tactic.Coherence.LiftHom

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Mathlib.Tactic.Coherence.LiftObj

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Mathlib.Tactic.Ring.CSLift

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: inj, Mathlib.Tactic.Ring.instCSLiftValLift, Mathlib.Tactic.Ring.CSLiftVal.eq

Module.DirectLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_injective, lift_of, ModuleCat.directLimitIsColimit_desc, lift_comp_of, lift_of'

Module.Presentation.CokernelData

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: Module.Presentation.cokernelRelations_relation, Module.Presentation.cokernel_relation, ofSection_lift, Module.Presentation.ofExact_relation, Ο€_lift

ModuleCat.HasLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_hom_apply, productLimitCone_isLimit_lift

ModuleCat.image

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_fac

Monoid.Coprod

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
13 mathmath: lift_apply_inr, lift_inr_inl, lift_apply_inl, mrange_lift, range_lift, lift_inl_inr, comp_lift, lift_comp_swap, lift_comp_inr, lift_swap, lift_comp_inl, lift_apply_mk, lift_unique

Monoid.CoprodI

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
14 mathmath: lift_of, inv_def, mrange_eq_iSup, lift_mrange_le, range_eq_iSup, freeGroupEquivCoprodI_symm_apply, lift_of', lift_symm_apply, of_leftInverse, lift_word_ping_pong, lift_comp_of', lift_comp_of, lift_range_le, lift_injective_of_ping_pong

Monoid.PushoutI

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_base, homEquiv_symm_apply, lift_of

MonoidAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
10 mathmath: Rep.to_Module_monoidAlgebra_map_aux, Representation.asAlgebraHom_def, lift_symm_apply, lift_apply', lift_apply, lift_mapRangeRingHom_algebraMap, lift_def, lift_single, lift_of, lift_unique'

MulArchimedeanClass

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_mk

NormedAddGroupHom

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_mk, lift_normNoninc, lift_unique, lift_norm_le, norm_lift_le

NormedAddGroupHom.Equalizer

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: liftEquiv_apply, lift_normNoninc, ΞΉ_comp_lift, lift_apply_coe, norm_lift_le

NormedAddGroupHom.ker

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: incl_comp_lift, lift_apply_coe

NumberField.ComplexEmbedding

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_comp_algebraMap, NumberField.InfinitePlace.comap_mk_lift, lift_algebraMap_apply

OmegaCompletePartialOrder

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

OrderBot

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

OrderTop

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Ordinal

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
45 mathmath: isSuccLimit_lift, lift_type_lt, sInf_compl_lt_lift_ord_succ, lift_one, type_uLift, liftInitialSeg_coe, lift_lt, lift_pred, lift_id, PSet.rank_eq_wfRank, lift_type_eq, liftPrincipalSeg_coe, mem_range_lift_of_card_le, lift_lift, lift_succ, Cardinal.lift_ord, Cardinal.lift_preBeth, RelIso.ordinal_lift_type_eq, lift_inj, lt_lift_iff, lift_uzero, lift_natCast, lift_cof, lift_add, lift_id', lift_zero, isSuccPrelimit_lift, lift_typein_top, typein_ordinal, type_lift_preimage, Cardinal.lift_aleph, lift_preOmega, lift_type_le, le_lift_iff, ZFSet.rank_eq_wfRank, Cardinal.lift_beth, lift_omega0, lift_omega, lift_ofNat, lift_card, lift_mul, lift_univ, lift_umax, lift_le, Cardinal.lift_preAleph

PFun

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
19 mathmath: Nat.rfind_min', res_univ, coe_preimage, coe_val, lift_graph, Nat.Partrec.Code.computable_recOn, core_restrict, Computableβ‚‚.partrecβ‚‚, lift_injective, Nat.Partrec'.of_prim, Computable.partrec, Dioph.diophFn_iff_pFun, prodLift_fst_comp_snd_comp, Nat.Partrec.of_eq_tot, coe_id, coe_comp, Nat.Partrec'.head, dom_coe, Nat.Partrec.of_primrec

PadicInt

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_sub_val_mem_span, lift_unique, lift_spec, lift_self

PartialOrder

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: compare_of_injective_eq_compareOfLessAndEq

PerfectClosure

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

PerfectRing

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
18 mathmath: lift_comp_lift_eq_id, lift_comp_lift, lift_lift, comp_lift_apply, lift_lift_apply, liftEquiv_apply, IsPerfectClosure.equiv_toRingHom, lift_comp_lift_apply, lift_id_apply, lift_self, lift_comp_lift_apply_eq_self, lift_apply, lift_comp, lift_comp_apply, comp_lift, IsPerfectClosure.equiv_symm_toRingHom, lift_id, lift_self_apply

Perfection

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_apply_apply_coe, lift_symm_apply, PerfectionMap.lift_apply, PerfectionMap.equiv_apply

PerfectionMap

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_symm_apply, lift_apply

PiTensorProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
17 mathmath: lift_reindex, lift.tprod, liftAlgHom_apply, lift_reindex_symm, toDualContinuousMultilinearMap_apply_apply, norm_eval_le_injectiveSeminorm, liftEquiv_symm_apply, liftEquiv_apply, lift_comp_reindex, lift_tprod, liftIsometry_apply_apply, norm_eval_le_projectiveSeminorm, lift_comp_map, lift.unique', lift_comp_reindex_symm, lift.unique, lift_symm

Polynomial.IsSplittingField

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Polynomial.SplittingField

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

PosSMulMono

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLEPosSMulMonoβ€”smul_le_smul_of_nonneg_left

PosSMulReflectLE

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLEPosSMulReflectLEβ€”le_of_smul_le_smul_left

PosSMulReflectLT

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLEPosSMulReflectLTβ€”lt_iff_lt_of_le_iff_le'
lt_of_smul_lt_smul_left

PosSMulStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLEPosSMulStrictMonoβ€”lt_iff_lt_of_le_iff_le'
smul_lt_smul_of_pos_left

PowerBasis

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: lift_aeval, AdjoinRoot.equiv'_symm_toAlgHom, liftEquiv_symm_apply, equivOfMinpoly_apply, AdjoinRoot.equiv'_symm_apply, equivOfRoot_apply, lift_gen

Preorder

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

PresentedAddMonoid

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: toMonoid.unique, lift_of

PresentedMonoid

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: toMonoid.unique, lift_of

Profinite

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_lifts_assoc, lift_lifts

ProfiniteGrp.ProfiniteCompletion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_eta, lift_eta_assoc, ProfiniteGrp.profiniteCompletion_map

Projectivization

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_mk

QuadraticAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_apply_apply, lift_symm_apply_coe

QuaternionAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_apply, lift_symm_apply

QuaternionAlgebra.Basis

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_zero, lift_smul, lift_one, liftHom_apply, lift_mul, lift_add

Quiver.FreeGroupoid

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_unique, lift_spec

Quiver.Push

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_unique, lift_comp, lift_obj

Quiver.Symmetrify

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_spec, lift_reverse, lift_unique

QuotientAddGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
10 mathmath: AdjoinRoot.evalEval_apply, lift_mk', ker_lift, lift_comp_mk', lift_mk, norm_lift_apply_le, lift_surjective_of_surjective, lift_quot_mk, KaehlerDifferential.quotKerTotalEquiv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply

QuotientGroup

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_mk, lift_comp_mk', lift_mk', ker_lift, lift_surjective_of_surjective, lift_quot_mk

Relation.ReflTransGen

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–β€”Relation.ReflTransGenβ€”β€”trans_induction_on
single
trans

Relation.TransGen

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–β€”β€”β€”β€”β€”

Representation.Coinvariants

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_mk, lift_comp_mk, Rep.indResAdjunction_counit_app_hom_hom, Rep.indResHomEquiv_symm_apply_hom

Ring.DirectLimit

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: lift_comp_of, lift_of, lift_injective, lift_of'

RingCon

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
14 mathmath: lift_comp_mk', lift_unique, lift_apply_mk', lift_surjective_iff, lift_bijective_iff, lift_surjective_of_surjective, lift_mk', range_lift, rangeS_lift, coe_liftₐ, map_apply, liftₐ_coe_toRingHom, lift_injective_iff, lift_coe

RingQuot

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: eq_lift_comp_mkRingHom, lift_unique, lift_mkRingHom_apply, lift_def

SMulPosMono

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLESMulPosMonoβ€”smul_le_smul_of_nonneg_right

SMulPosReflectLE

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLESMulPosReflectLEβ€”le_of_smul_le_smul_right
lt_iff_lt_of_le_iff_le'

SMulPosReflectLT

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLESMulPosReflectLTβ€”lt_of_smul_lt_smul_right
lt_iff_lt_of_le_iff_le'

SMulPosStrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalPreorder.toLESMulPosStrictMonoβ€”lt_iff_lt_of_le_iff_le'
smul_lt_smul_of_pos_right

SSet.StrictSegal.isPointwiseRightKanExtensionAt

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: fac_auxβ‚‚, fac_aux₃, fac_aux₁

SSet.Subcomplex

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_ΞΉ, lift_ΞΉ_assoc, lift_app_coe

SSet.Truncated.HomotopyCategory

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_obj_mk, lift_map_homMk

Sbtw

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–β€”Sbtwβ€”β€”Wbtw.lift
wbtw

SemiNormedGrp.completion

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp_incl, lift_unique

SemidirectProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_inr, lift_inl, lift_comp_inl, lift_comp_inr, lift_unique

SeparationQuotient

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
10 mathmath: lift_comp_mk, tendsto_lift_nhds_mk, continuousAt_lift, continuous_lift, uniformContinuous_lift, continuousWithinAt_lift, continuousOn_lift, lift_mk, liftCLM_apply, tendsto_lift_nhdsWithin_mk

SimpleGraph.ComponentCompl

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

SimpleGraph.ConnectedComponent

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
1 mathmath: lift_mk

SkewMonoidAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: lift_apply', lift_of, lift_single, lift_apply, lift_unique', lift_def, lift_symm_apply

StandardEtalePair

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: homEquiv_symm_apply, StandardEtalePresentation.toPresentation_algebra_smul, lift_X, StandardEtalePresentation.lift_bijective, StandardEtalePresentation.toPresentation_Οƒ', StandardEtalePresentation.toPresentation_algebra_algebraMap_apply, StandardEtalePresentation.toPresentation_val, lift_X_left, StandardEtalePresentation.toPresentation_relation

Submonoid.LocalizationMap

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
24 mathmath: lift_comp_lift_eq, lift_spec, lift_eq_iff, mulEquivOfLocalizations_apply, lift_mul_right, lift_of_comp, IsLocalization.lift_spec_mul_add, lift_localizationMap_mk', lift_unique, lift_mk', lift_surjective_iff, lift_comp, mulEquivOfLocalizations_symm_apply, lift_apply, Localization.mulEquivOfQuotient_apply, lift_left_inverse, lift_spec_mul, lift_eq, lift_mk'_spec, lift_mul_left, lift_injective_iff, liftβ‚€_def, lift_comp_lift, lift_id

Submonoid.LocalizationMap.AwayMap

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: lift_comp, lift_eq

Surreal

Definitions

NameCategoryTheorems
lift πŸ“–CompOpβ€”

Sym2

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_comp_map, coe_lift_symm_apply, lift_smul_lift, lift_mk, lift_map_apply

SymmetricAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_ΞΉ_apply, IsSymmetricAlgebra.equiv_apply, lift_comp_ΞΉ, lift_ΞΉ, IsSymmetricAlgebra.equiv_toAlgHom

T2Quotient

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: continuous_lift, lift_mk, unique_lift

TensorAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
7 mathmath: ΞΉ_comp_lift, lift_symm_apply, lift_ΞΉ_apply, lift_comp_ΞΉ, range_lift, LinearAlgebra.FreeProduct.lift_apply, lift_unique

TensorProduct

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
27 mathmath: mapβ‚‚_eq_range_lift_comp_mapIncl, ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply, Algebra.IsEpi.injective_lift_mul, lift.unique, lift.tmul', Rep.indResAdjunction_counit_app_hom_hom, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, IsTensorProduct.equiv_apply, lift_comprβ‚‚β‚›β‚—, lift.tmul, lift_comp_map, Coalgebra.lift_lsmul_comp_counit_comp_comul, groupHomology.H1AddEquivOfIsTrivial_symm_apply, LinearMap.lift_lsmul_mul_eq_lsmul_lift_lsmul, lift_mk, AlgebraTensorModule.lift_apply, Module.Flat.iff_lift_lsmul_comp_subtype_injective, LinearMap.rid_comp_lTensor, Algebra.injective_lift_lsmul, lift_comprβ‚‚, LinearMap.lid_comp_rTensor, IsTensorProduct.equiv_toLinearMap, lift_mk_comprβ‚‚β‚›β‚—, lift_comp_comm_eq, lift_mk_comprβ‚‚, Rep.indResHomEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply

TensorProduct.AlgebraTensorModule

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: uncurry_apply, lift_apply, lift_tmul, Algebra.FormallyUnramified.comp_sec

TensorProduct.LieModule

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: coe_liftLie_eq_lift_coe, lift_apply

Topology.IsQuotientMap

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_apply, lift_comp, liftEquiv_apply

TrivSqZeroExt

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
9 mathmath: lift_inlAlgHom_inrHom, lift_comp_inrHom, lift_apply_inr, liftEquiv_apply, liftEquivOfComm_apply, lift_def, lift_comp_inlHom, lift_apply_inl, range_liftAux

Trivialization

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: proj_lift, lift_self

Trunc

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
2 mathmath: LinearMap.detAux_def, lift_mk

Unitization

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_symm_apply_apply, lift_range, lift_symm_apply, lift_range_le, lift_apply_apply, lift_apply

UniversalEnvelopingAlgebra

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
6 mathmath: lift_unique, ΞΉ_comp_lift, lift_ΞΉ_apply, FreeLieAlgebra.universalEnvelopingEquivFreeAlgebra_apply, lift_symm_apply, lift_ΞΉ_apply'

ValuativeRel.ValueGroupWithZero

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_mul, lift_mk, lift_zero, lift_valuation, lift_one

Wbtw

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–β€”Wbtwβ€”β€”affineSegment.lift

WithOne

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_coe, lift_one, lift_unique

WithZero

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_coe, lift_zero, lift_unique

WittVector

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
4 mathmath: truncate_comp_lift, liftEquiv_apply, truncate_lift, lift_unique

ZMod

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
5 mathmath: lift_castAddHom, lift_comp_coe, lift_comp_castAddHom, lift_coe, lift_injective

Zsqrtd

Definitions

NameCategoryTheorems
lift πŸ“–CompOp
3 mathmath: lift_symm_apply_coe, lift_apply_apply, lift_injective

affineSegment

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalβ€”Set
Set.instHasSubset
affineSegment
β€”zero_smul
smul_le_smul_of_nonneg_right
zero_le_one
one_smul
smul_assoc

openSegment

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalβ€”Set
Set.instHasSubset
openSegment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”smul_lt_smul_of_pos_right
zero_lt_one
NeZero.one
zero_smul
add_smul
one_smul
smul_assoc

segment

Theorems

NameKindAssumesProvesValidatesDepends On
lift πŸ“–mathematicalβ€”Set
Set.instHasSubset
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”smul_le_smul_of_nonneg_right
zero_le_one
zero_smul
add_smul
one_smul
smul_assoc

---

← Back to Index